These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31854830)

  • 21. Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand II. Equilibrium study and competitive adsorption.
    Han R; Lu Z; Zou W; Daotong W; Shi J; Jiujun Y
    J Hazard Mater; 2006 Sep; 137(1):480-8. PubMed ID: 16631305
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective adsorption/recovery of Pb, Cu, and Cd with multiple fixed beds containing immobilized bacterial biomass.
    Chang JS; Huang JC
    Biotechnol Prog; 1998; 14(5):735-41. PubMed ID: 9758663
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of Pb, Cu, and Cd adsorption on particulate organic matter in soil.
    Guo X; Zhang S; Shan XQ; Luo LE; Pei Z; Zhu YG; Liu T; Xie YN; Gault A
    Environ Toxicol Chem; 2006 Sep; 25(9):2366-73. PubMed ID: 16986791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of amphoteric bentonite-loaded magnetic biochar and its adsorption properties for Cu
    Deng H; He H; Li W; Abbas T; Liu Z
    PeerJ; 2022; 10():e13030. PubMed ID: 35251788
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and application of a ternary composite of clay, saw-dust and peanut husks in heavy metal adsorption.
    Mungondori HH; Mtetwa S; Tichagwa L; Katwire DM; Nyamukamba P
    Water Sci Technol; 2017 May; 75(10):2443-2453. PubMed ID: 28541952
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Super high removal capacities of heavy metals (Pb
    Hayati B; Maleki A; Najafi F; Daraei H; Gharibi F; McKay G
    J Hazard Mater; 2017 Aug; 336():146-157. PubMed ID: 28494302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk).
    Saeed A; Iqbal M; Akhtar MW
    J Hazard Mater; 2005 Jan; 117(1):65-73. PubMed ID: 15621354
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling of copper(II) and lead(II) adsorption on kaolinite-based clay minerals individually and in the presence of humic acid.
    Hizal J; Apak R
    J Colloid Interface Sci; 2006 Mar; 295(1):1-13. PubMed ID: 16168423
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective adsorption of Pb
    Xu L; Liu Y; Wang J; Tang Y; Zhang Z
    J Hazard Mater; 2021 Feb; 404(Pt A):124140. PubMed ID: 33070005
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stabilization of heavy metals in soil using two organo-bentonites.
    Yu K; Xu J; Jiang X; Liu C; McCall W; Lu J
    Chemosphere; 2017 Oct; 184():884-891. PubMed ID: 28651314
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-purification of marine environments for heavy metals: a study on removal of lead(II) and copper(II) by cuttlebone.
    Dobaradaran S; Nabipour I; Keshtkar M; Ghasemi FF; Nazarialamdarloo T; Khalifeh F; Poorhosein M; Abtahi M; Saeedi R
    Water Sci Technol; 2017 Jan; 75(2):474-481. PubMed ID: 28112674
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous adsorption of Cd²⁺ and BPA on amphoteric surfactant activated montmorillonite.
    Liu C; Wu P; Zhu Y; Tran L
    Chemosphere; 2016 Feb; 144():1026-32. PubMed ID: 26451652
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Displacement mechanism of binary competitive adsorption for aqueous divalent metal ions onto a novel IDA-chelating resin: isotherm and kinetic modeling.
    Li L; Liu F; Jing X; Ling P; Li A
    Water Res; 2011 Jan; 45(3):1177-88. PubMed ID: 21146845
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: Kinetic, equilibrium and thermodynamic studies.
    Ngah WS; Fatinathan S
    J Environ Manage; 2010; 91(4):958-69. PubMed ID: 20044203
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extracellular polymeric substances from Bacillus subtilis associated with minerals modify the extent and rate of heavy metal sorption.
    Mikutta R; Baumgärtner A; Schippers A; Haumaier L; Guggenberger G
    Environ Sci Technol; 2012 Apr; 46(7):3866-73. PubMed ID: 22443088
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Application of Amphoteric-Cationic Combined Modification on Phenol Adsorption of Yellow Brown Soil].
    Liu W; Meng ZF; Ren S; Li WB
    Huan Jing Ke Xue; 2017 Jul; 38(7):3036-3044. PubMed ID: 29964647
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel adsorbent based on silkworm chrysalides for removal of heavy metals from wastewaters.
    Paulino AT; Minasse FA; Guilherme MR; Reis AV; Muniz EC; Nozaki J
    J Colloid Interface Sci; 2006 Sep; 301(2):479-87. PubMed ID: 16780853
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorption and desorption of bivalent metals to hematite nanoparticles.
    Grover VA; Hu J; Engates KE; Shipley HJ
    Environ Toxicol Chem; 2012 Jan; 31(1):86-92. PubMed ID: 21994178
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell.
    Peng SH; Wang R; Yang LZ; He L; He X; Liu X
    Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption and desorption of Cu(II) and Pb(II) in paddy soils cultivated for various years in the subtropical China.
    Ma L; Xu R; Jiang J
    J Environ Sci (China); 2010; 22(5):689-95. PubMed ID: 20608504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.