These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31854968)

  • 21. Physicochemical properties of nanoparticles regulate translocation across pulmonary surfactant monolayer and formation of lipoprotein corona.
    Hu G; Jiao B; Shi X; Valle RP; Fan Q; Zuo YY
    ACS Nano; 2013 Dec; 7(12):10525-33. PubMed ID: 24266809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Compatibility of PEGylated Polymer Nanoparticles with the Biophysical Function of Lung Surfactant.
    Beck-Broichsitter M
    Langmuir; 2018 Jan; 34(1):540-545. PubMed ID: 29220196
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses.
    Ma J; Mercer RR; Barger M; Schwegler-Berry D; Cohen JM; Demokritou P; Castranova V
    Toxicol Appl Pharmacol; 2015 Oct; 288(1):63-73. PubMed ID: 26210349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adverse biophysical effects of hydroxyapatite nanoparticles on natural pulmonary surfactant.
    Fan Q; Wang YE; Zhao X; Loo JS; Zuo YY
    ACS Nano; 2011 Aug; 5(8):6410-6. PubMed ID: 21761867
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles.
    Sayes CM; Reed KL; Warheit DB
    Toxicol Sci; 2007 May; 97(1):163-80. PubMed ID: 17301066
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving the heat transfer efficiency of synthetic oil with silica nanoparticles.
    Timofeeva EV; Moravek MR; Singh D
    J Colloid Interface Sci; 2011 Dec; 364(1):71-9. PubMed ID: 21889163
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Size dependent interactions of nanoparticles with lung surfactant model systems and the significant impact on surface potential.
    Ku T; Gill S; Löbenberg R; Azarmi S; Roa W; Prenner EJ
    J Nanosci Nanotechnol; 2008 Jun; 8(6):2971-8. PubMed ID: 18681033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative Brewster angle microscopy of the surface film of human broncho-alveolar lavage fluid.
    Winsel K; Hönig D; Lunkenheimer K; Geggel K; Witt C
    Eur Biophys J; 2003 Sep; 32(6):544-52. PubMed ID: 12679861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pulmonary toxicity and fate of agglomerated 10 and 40 nm aluminum oxyhydroxides following 4-week inhalation exposure of rats: toxic effects are determined by agglomerated, not primary particle size.
    Pauluhn J
    Toxicol Sci; 2009 May; 109(1):152-67. PubMed ID: 19251949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sonochemical synthesis and rheological properties of shear thickening silica dispersions.
    Hassan TA; Rangari VK; Jeelani S
    Ultrason Sonochem; 2010 Jun; 17(5):947-52. PubMed ID: 20207575
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactions between DPPC as a component of lung surfactant and amorphous silica nanoparticles investigated by HILIC-ESI-MS.
    Silina YE; Welck J; Kraegeloh A; Koch M; Fink-Straube C
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Sep; 1029-1030():222-229. PubMed ID: 27442798
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms of surfactant dysfunction in early acute lung injury.
    Kennedy M; Phelps D; Ingenito E
    Exp Lung Res; 1997; 23(3):171-89. PubMed ID: 9184787
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tensiometric and Phase Domain Behavior of Lung Surfactant on Mucus-like Viscoelastic Hydrogels.
    Schenck DM; Fiegel J
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):5917-28. PubMed ID: 26894883
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interfacial properties of emulsions stabilized with surfactant and nonsurfactant coated boehmite nanoparticles.
    Tigges B; Dederichs T; Möller M; Liu T; Richtering W; Weichold O
    Langmuir; 2010 Dec; 26(23):17913-8. PubMed ID: 21028858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhalation of titanium dioxide (P25) nanoparticles to rats and changes in surfactant protein (SP-D) levels in bronchoalveolar lavage fluid and serum.
    Okada T; Lee BW; Ogami A; Oyabu T; Myojo T
    Nanotoxicology; 2019 Dec; 13(10):1396-1408. PubMed ID: 31512956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of nanoparticles with the pulmonary surfactant system.
    Schleh C; Hohlfeld JM
    Inhal Toxicol; 2009 Jul; 21 Suppl 1():97-103. PubMed ID: 19558240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biophysical Activity of Impaired Lung Surfactant upon Exposure to Polymer Nanoparticles.
    Beck-Broichsitter M
    Langmuir; 2016 Oct; 32(40):10422-10429. PubMed ID: 27641633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of nanoparticles on the interfacial properties of liquid/liquid and liquid/air surface layers.
    Ravera F; Santini E; Loglio G; Ferrari M; Liggieri L
    J Phys Chem B; 2006 Oct; 110(39):19543-51. PubMed ID: 17004817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Viscosity and yield stress reduction in non-colloidal concentrated suspensions by surface modification with polymers and surfactants and/or nanoparticle addition.
    Marquez M; Robben A; Grady BP; Robb I
    J Colloid Interface Sci; 2006 Mar; 295(2):374-87. PubMed ID: 16289129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Encapsulation of multiple large spherical silica nanoparticles in hollow spherical silica shells.
    Guo Y; Andrew Davidson R; Peck KA; Guo T
    J Colloid Interface Sci; 2015 May; 445():112-118. PubMed ID: 25616251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.