BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 3185521)

  • 1. Topography and functions of sulfhydryl groups of the human erythrocyte glucose transport mechanism.
    Abbott RE; Schachter D
    Mol Cell Biochem; 1988; 82(1-2):85-90. PubMed ID: 3185521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfhydryl substituents of the human erythrocyte hexose transport mechanism.
    Abbott RE; Schachter D; Batt ER; Flamm M
    Am J Physiol; 1986 Jun; 250(6 Pt 1):C853-60. PubMed ID: 3717328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impermeant maleimides. Identification of an exofacial component of the human erythrocyte hexose transport mechanism.
    Batt ER; Abbott RE; Schachter D
    J Biol Chem; 1976 Nov; 251(22):7184-90. PubMed ID: 993210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impermeant maleimides. Oriented probes of erythrocyte membrane proteins.
    Abbott RE; Schachter D
    J Biol Chem; 1976 Nov; 251(22):7176-83. PubMed ID: 993209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction of an exofacial sulfhydryl group on the erythrocyte hexose carrier with an impermeant maleimide. Relevance to the mechanism of hexose transport.
    May JM
    J Biol Chem; 1988 Sep; 263(27):13635-40. PubMed ID: 3417676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of a permeant maleimide derivative of cysteine with the erythrocyte glucose carrier. Differential labelling of an exofacial carrier thiol group and its role in the transport mechanism.
    May JM
    Biochem J; 1989 Nov; 263(3):875-81. PubMed ID: 2489029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential labeling of the erythrocyte hexose carrier by N-ethylmaleimide: correlation of transport inhibition with reactive carrier sulfhydryl groups.
    May JM
    Biochim Biophys Acta; 1989 Nov; 986(2):207-16. PubMed ID: 2590670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of hexose transport in the human erythrocyte by 5, 5'-dithiobis(2-nitrobenzoic acid): role of an exofacial carrier sulfhydryl group.
    May JM
    J Membr Biol; 1989 Jun; 108(3):227-33. PubMed ID: 2778797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial protein import: modification of sulfhydryl groups of the inner mitochondrial membrane import machinery in Solanum tuberosum inhibits protein import.
    von Stedingk EM; Pavlov PF; Grinkevich VA; Glaser E
    Plant Mol Biol; 1997 Dec; 35(6):809-20. PubMed ID: 9426601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of hexose transport and labelling of the hexose carrier in human erythrocytes by an impermeant maleimide derivative of maltose.
    May JM
    Biochem J; 1988 Sep; 254(2):329-36. PubMed ID: 3178762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of a reactive exofacial sulfhydryl on the glucose carrier of human erythrocytes.
    May JM; Buchs A; Carter-Su C
    Biochemistry; 1990 Nov; 29(45):10393-8. PubMed ID: 2261480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of N-maleoylmethionine sulphone, a novel impermeant maleimide, and its use in the selective labelling of the erythrocyte glucose-transport system.
    Roberts SJ; Tanner MJ; Denton RM
    Biochem J; 1982 Jul; 205(1):139-45. PubMed ID: 7126174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of the dependence of the human erythrocyte glucose transport system on membrane sulfhydryl groups.
    Smith RP; Ellman GL
    J Membr Biol; 1973; 12(2):177-88. PubMed ID: 4205085
    [No Abstract]   [Full Text] [Related]  

  • 14. Possible relationship between membrane proteins and phospholipid asymmetry in the human erythrocyte membrane.
    Haest CW; Deuticke B
    Biochim Biophys Acta; 1976 Jun; 436(2):353-65. PubMed ID: 1276220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose transporter function is controlled by transporter oligomeric structure. A single, intramolecular disulfide promotes GLUT1 tetramerization.
    Zottola RJ; Cloherty EK; Coderre PE; Hansen A; Hebert DN; Carruthers A
    Biochemistry; 1995 Aug; 34(30):9734-47. PubMed ID: 7626644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of erythrocyte membrane proteins by membrane cholesterol and lipid fluidity.
    Borochov H; Abbott RE; Schachter D; Shinitzky M
    Biochemistry; 1979 Jan; 18(2):251-5. PubMed ID: 420782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topology of membrane sulfhydryl groups in the human erythrocyte. Demonstration of a non-reactive population in intrinsic proteins.
    Haest CW; Kamp D; Deuticke B
    Biochim Biophys Acta; 1981 May; 643(2):319-26. PubMed ID: 7225384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The location of redox-sensitive groups in the carrier protein of proline at the outer and inner surface of the membrane in Escherichia coli.
    Poolman B; Konings WN; Robillard GT
    Eur J Biochem; 1983 Sep; 135(1):41-6. PubMed ID: 6349997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LOCALIZATION OF ERYTHROCYTE MEMBRANE SULFHYDRYL GROUPS ESSENTIAL FOR GLUCOSE TRANSPORT.
    VANSTEVENINCK J; WEED RI; ROTHSTEIN A
    J Gen Physiol; 1965 Mar; 48(4):617-32. PubMed ID: 14324978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of peroxynitrite on erythrocytes.
    SoszyƄski M; Bartosz G
    Biochim Biophys Acta; 1996 Oct; 1291(2):107-14. PubMed ID: 8898870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.