These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Effects of the microbubble shell physicochemical properties on ultrasound-mediated drug delivery to the brain. Wu SY; Chen CC; Tung YS; Olumolade OO; Konofagou EE J Control Release; 2015 Aug; 212():30-40. PubMed ID: 26065734 [TBL] [Abstract][Full Text] [Related]
4. Comparing Strategies for Magnetic Functionalization of Microbubbles. Beguin E; Bau L; Shrivastava S; Stride E ACS Appl Mater Interfaces; 2019 Jan; 11(2):1829-1840. PubMed ID: 30574777 [TBL] [Abstract][Full Text] [Related]
5. Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles. Doinikov AA; Haac JF; Dayton PA Ultrasonics; 2009 Feb; 49(2):269-75. PubMed ID: 18990417 [TBL] [Abstract][Full Text] [Related]
6. Investigating the Role of Lipid Transfer in Microbubble-Mediated Drug Delivery. Aron M; Vince O; Gray M; Mannaris C; Stride E Langmuir; 2019 Oct; 35(40):13205-13215. PubMed ID: 31517490 [TBL] [Abstract][Full Text] [Related]
8. Influence of microbubble shell properties on ultrasound signal: Implications for low-power perfusion imaging. Leong-Poi H; Song J; Rim SJ; Christiansen J; Kaul S; Lindner JR J Am Soc Echocardiogr; 2002 Oct; 15(10 Pt 2):1269-76. PubMed ID: 12411916 [TBL] [Abstract][Full Text] [Related]
9. Kinetics of albumin microbubble dissolution in aqueous media. Khan AH; Dalvi SV Soft Matter; 2020 Feb; 16(8):2149-2163. PubMed ID: 32016261 [TBL] [Abstract][Full Text] [Related]
10. Optimal design and experimental investigation of surfactant encapsulated microbubbles. Zong Y; Wan M; Wang S; Zhang G Ultrasonics; 2006 Dec; 44 Suppl 1():e119-22. PubMed ID: 16859725 [TBL] [Abstract][Full Text] [Related]
11. The acoustic signature of decaying resonant phospholipid microbubbles. Thomas DH; Butler M; Pelekasis N; Anderson T; Stride E; Sboros V Phys Med Biol; 2013 Feb; 58(3):589-99. PubMed ID: 23318409 [TBL] [Abstract][Full Text] [Related]
12. Intermolecular Forces Model for Lipid Microbubble Shells. Borden MA Langmuir; 2019 Aug; 35(31):10042-10051. PubMed ID: 30543753 [TBL] [Abstract][Full Text] [Related]
14. Focal areas of increased lipid concentration on the coating of microbubbles during short tone-burst ultrasound insonification. Kooiman K; van Rooij T; Qin B; Mastik F; Vos HJ; Versluis M; Klibanov AL; de Jong N; Villanueva FS; Chen X PLoS One; 2017; 12(7):e0180747. PubMed ID: 28686673 [TBL] [Abstract][Full Text] [Related]
15. Acoustic characterization of monodisperse lipid-coated microbubbles: relationship between size and shell viscoelastic properties. Parrales MA; Fernandez JM; Perez-Saborid M; Kopechek JA; Porter TM J Acoust Soc Am; 2014 Sep; 136(3):1077. PubMed ID: 25190383 [TBL] [Abstract][Full Text] [Related]
16. Quantitative Pharmacokinetics Reveal Impact of Lipid Composition on Microbubble and Nanoprogeny Shell Fate. Rajora MA; Dhaliwal A; Zheng M; Choi V; Overchuk M; Lou JWH; Pellow C; Goertz D; Chen J; Zheng G Adv Sci (Weinh); 2024 Jan; 11(4):e2304453. PubMed ID: 38032129 [TBL] [Abstract][Full Text] [Related]
17. The influence of distance between microbubbles on the fluid flow produced during ultrasound exposure. Schutt CE; Ibsen SD; Thrift W; Esener SC J Acoust Soc Am; 2014 Dec; 136(6):3422. PubMed ID: 25480086 [TBL] [Abstract][Full Text] [Related]
18. The effect of size range on ultrasound-induced translations in microbubble populations. Supponen O; Upadhyay A; Lum J; Guidi F; Murray T; Vos HJ; Tortoli P; Borden M J Acoust Soc Am; 2020 May; 147(5):3236. PubMed ID: 32486824 [TBL] [Abstract][Full Text] [Related]
19. Influence of nesting shell size on brightness longevity and resistance to ultrasound-induced dissolution during enhanced B-mode contrast imaging. Wallace N; Dicker S; Lewin P; Wrenn SP Ultrasonics; 2014 Dec; 54(8):2099-108. PubMed ID: 25041980 [TBL] [Abstract][Full Text] [Related]