BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 3185548)

  • 21. Differential nucleosome positioning on Xenopus oocyte and somatic 5 S RNA genes determines both TFIIIA and H1 binding: a mechanism for selective H1 repression.
    Panetta G; Buttinelli M; Flaus A; Richmond TJ; Rhodes D
    J Mol Biol; 1998 Sep; 282(3):683-97. PubMed ID: 9737930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High mobility group proteins 14 and 17 can space nucleosomal particles deficient in histones H2A and H2B creating a template that is transcriptionally active.
    Tremethick DJ
    J Biol Chem; 1994 Nov; 269(45):28436-42. PubMed ID: 7961785
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regular arrangement of nucleosomes on 5S rRNA genes in Xenopus laevis.
    Young D; Carroll D
    Mol Cell Biol; 1983 Apr; 3(4):720-30. PubMed ID: 6855773
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Histone-DNA contacts in a nucleosome core containing a Xenopus 5S rRNA gene.
    Pruss D; Wolffe AP
    Biochemistry; 1993 Jul; 32(27):6810-4. PubMed ID: 8334114
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Histone H1 binding does not inhibit transcription of nucleosomal Xenopus laevis somatic 5S rRNA templates.
    Howe L; Itoh T; Katagiri C; Ausió J
    Biochemistry; 1998 May; 37(20):7077-82. PubMed ID: 9585517
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential 5S RNA gene expression in vitro.
    Wolffe AP; Brown DD
    Cell; 1987 Dec; 51(5):733-40. PubMed ID: 3677171
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptionally inactive oocyte-type 5S RNA genes of Xenopus laevis are complexed with TFIIIA in vitro.
    Peck LJ; Millstein L; Eversole-Cire P; Gottesfeld JM; Varshavsky A
    Mol Cell Biol; 1987 Oct; 7(10):3503-10. PubMed ID: 3683391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Atomic force microscopy sees nucleosome positioning and histone H1-induced compaction in reconstituted chromatin.
    Sato MH; Ura K; Hohmura KI; Tokumasu F; Yoshimura SH; Hanaoka F; Takeyasu K
    FEBS Lett; 1999 Jun; 452(3):267-71. PubMed ID: 10386604
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Histone acetylation: influence on transcription, nucleosome mobility and positioning, and linker histone-dependent transcriptional repression.
    Ura K; Kurumizaka H; Dimitrov S; Almouzni G; Wolffe AP
    EMBO J; 1997 Apr; 16(8):2096-107. PubMed ID: 9155035
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Specific regulation of Xenopus chromosomal 5S rRNA gene transcription in vivo by histone H1.
    Bouvet P; Dimitrov S; Wolffe AP
    Genes Dev; 1994 May; 8(10):1147-59. PubMed ID: 7926720
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assembly of transcriptionally active 5S RNA gene chromatin in vitro.
    Gottesfeld J; Bloomer LS
    Cell; 1982 Apr; 28(4):781-91. PubMed ID: 7201351
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The H3-H4 N-terminal tail domains are the primary mediators of transcription factor IIIA access to 5S DNA within a nucleosome.
    Vitolo JM; Thiriet C; Hayes JJ
    Mol Cell Biol; 2000 Mar; 20(6):2167-75. PubMed ID: 10688663
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human TFIIIA alone is sufficient to prevent nucleosomal repression of a homologous 5S gene.
    Stünkel W; Kober I; Kauer M; Taimor G; Seifart KH
    Nucleic Acids Res; 1995 Jan; 23(1):109-16. PubMed ID: 7870575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nucleosome assembly in vitro: separate histone transfer and synergistic interaction of native histone complexes purified from nuclei of Xenopus laevis oocytes.
    Kleinschmidt JA; Seiter A; Zentgraf H
    EMBO J; 1990 Apr; 9(4):1309-18. PubMed ID: 2323341
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNA superhelicity enhances the assembly of transcriptionally active chromatin in vitro.
    Sekiguchi JM; Kmiec EB
    Mol Gen Genet; 1989 Dec; 220(1):73-80. PubMed ID: 2558288
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assembly of correctly spaced chromatin in a nuclear extract from Xenopus laevis oocytes.
    Sessa G; Ruberti I
    Nucleic Acids Res; 1990 Sep; 18(18):5449-55. PubMed ID: 2170936
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Xenopus transcription factor IIIA and the 5S nucleosome: development of a useful in vitro system.
    Yang Z; Hayes JJ
    Biochem Cell Biol; 2003 Jun; 81(3):177-84. PubMed ID: 12897852
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sin mutations of histone H3: influence on nucleosome core structure and function.
    Kurumizaka H; Wolffe AP
    Mol Cell Biol; 1997 Dec; 17(12):6953-69. PubMed ID: 9372928
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Developmental regulation of two 5S ribosomal RNA genes.
    Wolffe AP; Brown DD
    Science; 1988 Sep; 241(4873):1626-32. PubMed ID: 3420414
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of the two distinct types of minichromosomes that are assembled on DNA injected in Xenopus oocytes.
    Ryoji M; Worcel A
    Cell; 1985 Apr; 40(4):923-32. PubMed ID: 2985269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.