These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 31855670)
1. Nanoplastics display strong stability in aqueous environments: Insights from aggregation behaviour and theoretical calculations. Mao Y; Li H; Huangfu X; Liu Y; He Q Environ Pollut; 2020 Mar; 258():113760. PubMed ID: 31855670 [TBL] [Abstract][Full Text] [Related]
2. Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic matter. Li S; Liu H; Gao R; Abdurahman A; Dai J; Zeng F Environ Pollut; 2018 Jun; 237():126-132. PubMed ID: 29482018 [TBL] [Abstract][Full Text] [Related]
3. Aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes. Yu S; Shen M; Li S; Fu Y; Zhang D; Liu H; Liu J Environ Pollut; 2019 Dec; 255(Pt 2):113302. PubMed ID: 31597113 [TBL] [Abstract][Full Text] [Related]
4. Impact of CeO Li X; He E; Xia B; Van Gestel CAM; Peijnenburg WJGM; Cao X; Qiu H Water Res; 2020 Nov; 186():116324. PubMed ID: 32871291 [TBL] [Abstract][Full Text] [Related]
5. Aggregation kinetics of UV irradiated nanoplastics in aquatic environments. Liu Y; Hu Y; Yang C; Chen C; Huang W; Dang Z Water Res; 2019 Oct; 163():114870. PubMed ID: 31336206 [TBL] [Abstract][Full Text] [Related]
6. Aggregation and Deposition Kinetics of Polystyrene Microplastics and Nanoplastics in Aquatic Environment. Liu L; Song J; Zhang M; Jiang W Bull Environ Contam Toxicol; 2021 Oct; 107(4):741-747. PubMed ID: 33914100 [TBL] [Abstract][Full Text] [Related]
7. The difference of aggregation mechanism between microplastics and nanoplastics: Role of Brownian motion and structural layer force. Sun H; Jiao R; Wang D Environ Pollut; 2021 Jan; 268(Pt B):115942. PubMed ID: 33158612 [TBL] [Abstract][Full Text] [Related]
8. Aggregation kinetics of fragmental PET nanoplastics in aqueous environment: Complex roles of electrolytes, pH and humic acid. Dong S; Cai W; Xia J; Sheng L; Wang W; Liu H Environ Pollut; 2021 Jan; 268(Pt B):115828. PubMed ID: 33120151 [TBL] [Abstract][Full Text] [Related]
9. Acute effects of nanoplastics and microplastics on periphytic biofilms depending on particle size, concentration and surface modification. Miao L; Hou J; You G; Liu Z; Liu S; Li T; Mo Y; Guo S; Qu H Environ Pollut; 2019 Dec; 255(Pt 2):113300. PubMed ID: 31610513 [TBL] [Abstract][Full Text] [Related]
10. Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics. Cai L; Hu L; Shi H; Ye J; Zhang Y; Kim H Chemosphere; 2018 Apr; 197():142-151. PubMed ID: 29348047 [TBL] [Abstract][Full Text] [Related]
11. Effects of Cd(II) on the stability of humic acid-coated nano-TiO Wang L; Lu Y; Yang C; Chen C; Huang W; Dang Z Environ Sci Pollut Res Int; 2017 Oct; 24(29):23144-23152. PubMed ID: 28828557 [TBL] [Abstract][Full Text] [Related]
12. Aggregation and stability of sulfate-modified polystyrene nanoplastics in synthetic and natural waters. Wang J; Zhao X; Wu A; Tang Z; Niu L; Wu F; Wang F; Zhao T; Fu Z Environ Pollut; 2021 Jan; 268(Pt A):114240. PubMed ID: 33152633 [TBL] [Abstract][Full Text] [Related]
13. Influence of natural organic matters on fate of polystyrene nanoplastics in porous media. Zhang M; Hou J; Xia J; Zeng Y; Miao L Sci Total Environ; 2023 Oct; 893():164504. PubMed ID: 37257602 [TBL] [Abstract][Full Text] [Related]
14. Role of extracellular polymeric substances in the aggregation and biological response of micro(nano)plastics with different functional groups and sizes. Xiong S; Cao X; Eggleston I; Chi Y; Li A; Liu X; Zhao J; Xing B J Hazard Mater; 2023 Mar; 446():130713. PubMed ID: 36630882 [TBL] [Abstract][Full Text] [Related]
15. Effect of salinity and humic acid on the aggregation and toxicity of polystyrene nanoplastics with different functional groups and charges. Wu J; Jiang R; Lin W; Ouyang G Environ Pollut; 2019 Feb; 245():836-843. PubMed ID: 30502713 [TBL] [Abstract][Full Text] [Related]
16. Aggregation behavior of polystyrene nanoplastics: Role of surface functional groups and protein and electrolyte variation. Guo Y; Tang N; Lu L; Li N; Hu T; Guo J; Zhang J; Zeng Z; Liang J Chemosphere; 2024 Feb; 350():140998. PubMed ID: 38142881 [TBL] [Abstract][Full Text] [Related]
17. Roles of pH, cation valence, and ionic strength in the stability and aggregation behavior of zinc oxide nanoparticles. Wang X; Sun T; Zhu H; Han T; Wang J; Dai H J Environ Manage; 2020 Aug; 267():110656. PubMed ID: 32349960 [TBL] [Abstract][Full Text] [Related]
18. Interpreting the role of NO Song J; Xu Y; Liu C; He Q; Huang R; Jiang S; Ma J; Wu Z; Huangfu X Ecotoxicol Environ Saf; 2020 May; 194():110456. PubMed ID: 32171963 [TBL] [Abstract][Full Text] [Related]
19. The heteroaggregation and deposition behavior of nanoplastics on Al Wu J; Liu J; Wu P; Sun L; Chen M; Shang Z; Ye Q; Zhu N J Hazard Mater; 2022 Aug; 435():128964. PubMed ID: 35490632 [TBL] [Abstract][Full Text] [Related]
20. Aqueous aggregation behavior of citric acid coated magnetite nanoparticles: Effects of pH, cations, anions, and humic acid. Liu J; Dai C; Hu Y Environ Res; 2018 Feb; 161():49-60. PubMed ID: 29101829 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]