BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 31855670)

  • 1. Nanoplastics display strong stability in aqueous environments: Insights from aggregation behaviour and theoretical calculations.
    Mao Y; Li H; Huangfu X; Liu Y; He Q
    Environ Pollut; 2020 Mar; 258():113760. PubMed ID: 31855670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic matter.
    Li S; Liu H; Gao R; Abdurahman A; Dai J; Zeng F
    Environ Pollut; 2018 Jun; 237():126-132. PubMed ID: 29482018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes.
    Yu S; Shen M; Li S; Fu Y; Zhang D; Liu H; Liu J
    Environ Pollut; 2019 Dec; 255(Pt 2):113302. PubMed ID: 31597113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of CeO
    Li X; He E; Xia B; Van Gestel CAM; Peijnenburg WJGM; Cao X; Qiu H
    Water Res; 2020 Nov; 186():116324. PubMed ID: 32871291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation kinetics of UV irradiated nanoplastics in aquatic environments.
    Liu Y; Hu Y; Yang C; Chen C; Huang W; Dang Z
    Water Res; 2019 Oct; 163():114870. PubMed ID: 31336206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation and Deposition Kinetics of Polystyrene Microplastics and Nanoplastics in Aquatic Environment.
    Liu L; Song J; Zhang M; Jiang W
    Bull Environ Contam Toxicol; 2021 Oct; 107(4):741-747. PubMed ID: 33914100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The difference of aggregation mechanism between microplastics and nanoplastics: Role of Brownian motion and structural layer force.
    Sun H; Jiao R; Wang D
    Environ Pollut; 2021 Jan; 268(Pt B):115942. PubMed ID: 33158612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation kinetics of fragmental PET nanoplastics in aqueous environment: Complex roles of electrolytes, pH and humic acid.
    Dong S; Cai W; Xia J; Sheng L; Wang W; Liu H
    Environ Pollut; 2021 Jan; 268(Pt B):115828. PubMed ID: 33120151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute effects of nanoplastics and microplastics on periphytic biofilms depending on particle size, concentration and surface modification.
    Miao L; Hou J; You G; Liu Z; Liu S; Li T; Mo Y; Guo S; Qu H
    Environ Pollut; 2019 Dec; 255(Pt 2):113300. PubMed ID: 31610513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics.
    Cai L; Hu L; Shi H; Ye J; Zhang Y; Kim H
    Chemosphere; 2018 Apr; 197():142-151. PubMed ID: 29348047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Cd(II) on the stability of humic acid-coated nano-TiO
    Wang L; Lu Y; Yang C; Chen C; Huang W; Dang Z
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23144-23152. PubMed ID: 28828557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregation and stability of sulfate-modified polystyrene nanoplastics in synthetic and natural waters.
    Wang J; Zhao X; Wu A; Tang Z; Niu L; Wu F; Wang F; Zhao T; Fu Z
    Environ Pollut; 2021 Jan; 268(Pt A):114240. PubMed ID: 33152633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of natural organic matters on fate of polystyrene nanoplastics in porous media.
    Zhang M; Hou J; Xia J; Zeng Y; Miao L
    Sci Total Environ; 2023 Oct; 893():164504. PubMed ID: 37257602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of extracellular polymeric substances in the aggregation and biological response of micro(nano)plastics with different functional groups and sizes.
    Xiong S; Cao X; Eggleston I; Chi Y; Li A; Liu X; Zhao J; Xing B
    J Hazard Mater; 2023 Mar; 446():130713. PubMed ID: 36630882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of salinity and humic acid on the aggregation and toxicity of polystyrene nanoplastics with different functional groups and charges.
    Wu J; Jiang R; Lin W; Ouyang G
    Environ Pollut; 2019 Feb; 245():836-843. PubMed ID: 30502713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregation behavior of polystyrene nanoplastics: Role of surface functional groups and protein and electrolyte variation.
    Guo Y; Tang N; Lu L; Li N; Hu T; Guo J; Zhang J; Zeng Z; Liang J
    Chemosphere; 2024 Feb; 350():140998. PubMed ID: 38142881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of pH, cation valence, and ionic strength in the stability and aggregation behavior of zinc oxide nanoparticles.
    Wang X; Sun T; Zhu H; Han T; Wang J; Dai H
    J Environ Manage; 2020 Aug; 267():110656. PubMed ID: 32349960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interpreting the role of NO
    Song J; Xu Y; Liu C; He Q; Huang R; Jiang S; Ma J; Wu Z; Huangfu X
    Ecotoxicol Environ Saf; 2020 May; 194():110456. PubMed ID: 32171963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The heteroaggregation and deposition behavior of nanoplastics on Al
    Wu J; Liu J; Wu P; Sun L; Chen M; Shang Z; Ye Q; Zhu N
    J Hazard Mater; 2022 Aug; 435():128964. PubMed ID: 35490632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous aggregation behavior of citric acid coated magnetite nanoparticles: Effects of pH, cations, anions, and humic acid.
    Liu J; Dai C; Hu Y
    Environ Res; 2018 Feb; 161():49-60. PubMed ID: 29101829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.