BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 31856171)

  • 1. De novo identification of satellite DNAs in the sequenced genomes of Drosophila virilis and D. americana using the RepeatExplorer and TAREAN pipelines.
    Silva BSML; Heringer P; Dias GB; Svartman M; Kuhn GCS
    PLoS One; 2019; 14(12):e0223466. PubMed ID: 31856171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Silico Identification and Characterization of Satellite DNAs in 23
    Silva BSML; Picorelli ACR; Kuhn GCS
    Genes (Basel); 2023 Jan; 14(2):. PubMed ID: 36833227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting the Satellite DNA Landscape in Three Cactophilic
    de Lima LG; Svartman M; Kuhn GCS
    G3 (Bethesda); 2017 Aug; 7(8):2831-2843. PubMed ID: 28659292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetris is a foldback transposon that provided the building blocks for an emerging satellite DNA of Drosophila virilis.
    Dias GB; Svartman M; Delprat A; Ruiz A; Kuhn GC
    Genome Biol Evol; 2014 May; 6(6):1302-13. PubMed ID: 24858539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Helitrons shaping the genomic architecture of Drosophila: enrichment of DINE-TR1 in α- and β-heterochromatin, satellite DNA emergence, and piRNA expression.
    Dias GB; Heringer P; Svartman M; Kuhn GC
    Chromosome Res; 2015 Sep; 23(3):597-613. PubMed ID: 26408292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure, Organization, and Evolution of Satellite DNAs: Insights from the Drosophila repleta and D. virilis Species Groups.
    Kuhn GCS; Heringer P; Dias GB
    Prog Mol Subcell Biol; 2021; 60():27-56. PubMed ID: 34386871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-Depth Satellitome Analyses of 37 Drosophila Species Illuminate Repetitive DNA Evolution in the Drosophila Genus.
    de Lima LG; Ruiz-Ruano FJ
    Genome Biol Evol; 2022 May; 14(5):. PubMed ID: 35511582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput analysis of the satellitome illuminates satellite DNA evolution.
    Ruiz-Ruano FJ; López-León MD; Cabrero J; Camacho JPM
    Sci Rep; 2016 Jul; 6():28333. PubMed ID: 27385065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Medium-sized tandem repeats represent an abundant component of the Drosophila virilis genome.
    Abdurashitov MA; Gonchar DA; Chernukhin VA; Tomilov VN; Tomilova JE; Schostak NG; Zatsepina OG; Zelentsova ES; Evgen'ev MB; Degtyarev SK
    BMC Genomics; 2013 Nov; 14():771. PubMed ID: 24209985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Quality Genome Assemblies Reveal Evolutionary Dynamics of Repetitive DNA and Structural Rearrangements in the Drosophila virilis Subgroup.
    Flynn JM; Ahmed-Braimah YH; Long M; Wing RA; Clark AG
    Genome Biol Evol; 2024 Jan; 16(1):. PubMed ID: 38159044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads.
    Novák P; Ávila Robledillo L; Koblížková A; Vrbová I; Neumann P; Macas J
    Nucleic Acids Res; 2017 Jul; 45(12):e111. PubMed ID: 28402514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Satellite DNA-like repeats are dispersed throughout the genome of the Pacific oyster Crassostrea gigas carried by Helentron non-autonomous mobile elements.
    Vojvoda Zeljko T; Pavlek M; Meštrović N; Plohl M
    Sci Rep; 2020 Sep; 10(1):15107. PubMed ID: 32934255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of morabine grasshopper genomes reveals highly abundant transposable elements and rapidly proliferating satellite DNA repeats.
    Palacios-Gimenez OM; Koelman J; Palmada-Flores M; Bradford TM; Jones KK; Cooper SJB; Kawakami T; Suh A
    BMC Biol; 2020 Dec; 18(1):199. PubMed ID: 33349252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Satellite DNAs-From Localized to Highly Dispersed Genome Components.
    Šatović-Vukšić E; Plohl M
    Genes (Basel); 2023 Mar; 14(3):. PubMed ID: 36981013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule sequencing resolves the detailed structure of complex satellite DNA loci in
    Khost DE; Eickbush DG; Larracuente AM
    Genome Res; 2017 May; 27(5):709-721. PubMed ID: 28373483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The non-regular orbit: three satellite DNAs in Drosophila martensis (buzzatii complex, repleta group) followed three different evolutionary pathways.
    Kuhn GC; Schwarzacher T; Heslop-Harrison JS
    Mol Genet Genomics; 2010 Oct; 284(4):251-62. PubMed ID: 20683615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the satellitome in lower vascular plants: the case of the endangered fern Vandenboschia speciosa.
    Ruiz-Ruano FJ; Navarro-Domínguez B; Camacho JPM; Garrido-Ramos MA
    Ann Bot; 2019 Mar; 123(4):587-599. PubMed ID: 30357311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nature and organization of satellite DNAs in
    Alisawi O; Richert-Pöggeler KR; Heslop-Harrison JSP; Schwarzacher T
    Front Plant Sci; 2023; 14():1232588. PubMed ID: 37868307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pvB370 BamHI satellite DNA family of the Drosophila virilis group and its evolutionary relation to mobile dispersed genetic pDv elements.
    Heikkinen E; Launonen V; Müller E; Bachmann L
    J Mol Evol; 1995 Nov; 41(5):604-14. PubMed ID: 7490775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origins and Evolutionary Patterns of the
    de Lima LG; Hanlon SL; Gerton JL
    G3 (Bethesda); 2020 Nov; 10(11):4129-4146. PubMed ID: 32934018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.