These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Neural networks with circular filters enable data efficient inference of sequence motifs. Blum CF; Kollmann M Bioinformatics; 2019 Oct; 35(20):3937-3943. PubMed ID: 30918943 [TBL] [Abstract][Full Text] [Related]
6. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks. Pan X; Rijnbeek P; Yan J; Shen HB BMC Genomics; 2018 Jul; 19(1):511. PubMed ID: 29970003 [TBL] [Abstract][Full Text] [Related]
7. On Minimizers and Convolutional Filters: Theoretical Connections and Applications to Genome Analysis. Yu YW J Comput Biol; 2024 May; 31(5):381-395. PubMed ID: 38687333 [No Abstract] [Full Text] [Related]
8. Convolutional neural networks for classification of alignments of non-coding RNA sequences. Aoki G; Sakakibara Y Bioinformatics; 2018 Jul; 34(13):i237-i244. PubMed ID: 29949978 [TBL] [Abstract][Full Text] [Related]
9. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks. Xuan P; Sun H; Wang X; Zhang T; Pan S Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729 [TBL] [Abstract][Full Text] [Related]
10. Predicting enhancers with deep convolutional neural networks. Min X; Zeng W; Chen S; Chen N; Chen T; Jiang R BMC Bioinformatics; 2017 Dec; 18(Suppl 13):478. PubMed ID: 29219068 [TBL] [Abstract][Full Text] [Related]
11. Multinomial Convolutions for Joint Modeling of Regulatory Motifs and Sequence Activity Readouts. Park M; Singh S; Khan SR; Abrar MA; Grisanti F; Rahman MS; Samee MAH Genes (Basel); 2022 Sep; 13(9):. PubMed ID: 36140783 [TBL] [Abstract][Full Text] [Related]
12. Ab initio identification of putative human transcription factor binding sites by comparative genomics. CorĂ D; Herrmann C; Dieterich C; Di Cunto F; Provero P; Caselle M BMC Bioinformatics; 2005 May; 6():110. PubMed ID: 15865625 [TBL] [Abstract][Full Text] [Related]
13. EDeepSSP: Explainable deep neural networks for exact splice sites prediction. Amilpur S; Bhukya R J Bioinform Comput Biol; 2020 Aug; 18(4):2050024. PubMed ID: 32696716 [TBL] [Abstract][Full Text] [Related]
14. Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks. Pan X; Shen HB Bioinformatics; 2018 Oct; 34(20):3427-3436. PubMed ID: 29722865 [TBL] [Abstract][Full Text] [Related]
15. Learning and interpreting the gene regulatory grammar in a deep learning framework. Chen L; Capra JA PLoS Comput Biol; 2020 Nov; 16(11):e1008334. PubMed ID: 33137083 [TBL] [Abstract][Full Text] [Related]
16. Identifying complex motifs in massive omics data with a variable-convolutional layer in deep neural network. Li JY; Jin S; Tu XM; Ding Y; Gao G Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34219140 [TBL] [Abstract][Full Text] [Related]
18. Bacterial classification with convolutional neural networks based on different data reduction layers. Abd-Alhalem SM; Soliman NF; Eldin S; Abd Elrahman SE; Ismail NA; El-Rabaie EM; El-Samie FEA Nucleosides Nucleotides Nucleic Acids; 2020; 39(4):493-503. PubMed ID: 31418627 [TBL] [Abstract][Full Text] [Related]
19. Convolutional neural network based on SMILES representation of compounds for detecting chemical motif. Hirohara M; Saito Y; Koda Y; Sato K; Sakakibara Y BMC Bioinformatics; 2018 Dec; 19(Suppl 19):526. PubMed ID: 30598075 [TBL] [Abstract][Full Text] [Related]
20. Deep neural networks for inferring binding sites of RNA-binding proteins by using distributed representations of RNA primary sequence and secondary structure. Deng L; Liu Y; Shi Y; Zhang W; Yang C; Liu H BMC Genomics; 2020 Dec; 21(Suppl 13):866. PubMed ID: 33334313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]