BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31856650)

  • 1. Multi-Directional Dynamic Model for Traumatic Brain Injury Detection.
    Laksari K; Fanton M; Wu LC; Nguyen TH; Kurt M; Giordano C; Kelly E; O'Keeffe E; Wallace E; Doherty C; Campbell M; Tiernan S; Grant G; Ruan J; Barbat S; Camarillo DB
    J Neurotrauma; 2020 Apr; 37(7):982-993. PubMed ID: 31856650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voluntary Head Rotational Velocity and Implications for Brain Injury Risk Metrics.
    Hernandez F; Camarillo DB
    J Neurotrauma; 2019 Apr; 36(7):1125-1135. PubMed ID: 29848152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of Kinematic Brain Injury Metrics for Predicting Strain Responses in Diverse Automotive Impact Conditions.
    Gabler LF; Crandall JR; Panzer MB
    Ann Biomed Eng; 2016 Dec; 44(12):3705-3718. PubMed ID: 27436295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Rank Representation of Head Impact Kinematics: A Data-Driven Emulator.
    Arrué P; Toosizadeh N; Babaee H; Laksari K
    Front Bioeng Biotechnol; 2020; 8():555493. PubMed ID: 33102454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateral impacts correlate with falx cerebri displacement and corpus callosum trauma in sports-related concussions.
    Hernandez F; Giordano C; Goubran M; Parivash S; Grant G; Zeineh M; Camarillo D
    Biomech Model Mechanobiol; 2019 Jun; 18(3):631-649. PubMed ID: 30859404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mild traumatic brain injury predictors based on angular accelerations during impacts.
    Kimpara H; Iwamoto M
    Ann Biomed Eng; 2012 Jan; 40(1):114-26. PubMed ID: 21994065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationships between injury kinematics, neurological recovery, and pathology following concussion.
    Wofford KL; Grovola MR; Adewole DO; Browne KD; Putt ME; O'Donnell JC; Cullen DK
    Brain Commun; 2021; 3(4):fcab268. PubMed ID: 34934944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Porcine Model of Traumatic Brain Injury via Head Rotational Acceleration.
    Cullen DK; Harris JP; Browne KD; Wolf JA; Duda JE; Meaney DF; Margulies SS; Smith DH
    Methods Mol Biol; 2016; 1462():289-324. PubMed ID: 27604725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms and variances of rotation-induced brain injury: a parametric investigation between head kinematics and brain strain.
    Bian K; Mao H
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2323-2341. PubMed ID: 32449073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embedded axonal fiber tracts improve finite element model predictions of traumatic brain injury.
    Hajiaghamemar M; Wu T; Panzer MB; Margulies SS
    Biomech Model Mechanobiol; 2020 Jun; 19(3):1109-1130. PubMed ID: 31811417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigate the Variations of the Head and Brain Response in a Rodent Head Impact Acceleration Model by Finite Element Modeling.
    Zhou R; Li Y; Cavanaugh JM; Zhang L
    Front Bioeng Biotechnol; 2020; 8():172. PubMed ID: 32258009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Axonal Strain as a Predictor for Mild Traumatic Brain Injuries Using Finite Element Modeling.
    Giordano C; Kleiven S
    Stapp Car Crash J; 2014 Nov; 58():29-61. PubMed ID: 26192949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive Factors of Kinematics in Traumatic Brain Injury from Head Impacts Based on Statistical Interpretation.
    Zhan X; Li Y; Liu Y; Domel AG; Alizadeh HV; Zhou Z; Cecchi NJ; Raymond SJ; Tiernan S; Ruan J; Barbat S; Gevaert O; Zeineh MM; Grant GA; Camarillo DB
    Ann Biomed Eng; 2021 Oct; 49(10):2901-2913. PubMed ID: 34244908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of traumatic brain injuries using the next generation of simulated injury monitor (SIMon) finite element head model.
    Takhounts EG; Ridella SA; Hasija V; Tannous RE; Campbell JQ; Malone D; Danelson K; Stitzel J; Rowson S; Duma S
    Stapp Car Crash J; 2008 Nov; 52():1-31. PubMed ID: 19085156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A network-based response feature matrix as a brain injury metric.
    Wu S; Zhao W; Rowson B; Rowson S; Ji S
    Biomech Model Mechanobiol; 2020 Jun; 19(3):927-942. PubMed ID: 31760600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pediatric concussion: biomechanical differences between outcomes of transient and persistent (> 4 weeks) postconcussion symptoms.
    Post A; Hoshizaki TB; Zemek R; Gilchrist MD; Koncan D; Dawson L; Chen W; Ledoux AA;
    J Neurosurg Pediatr; 2017 Jun; 19(6):641-651. PubMed ID: 28347202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a Second-Order System for Rapid Estimation of Maximum Brain Strain.
    Gabler LF; Crandall JR; Panzer MB
    Ann Biomed Eng; 2019 Sep; 47(9):1971-1981. PubMed ID: 30515603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Tissue-Level Brain Injury Metrics Using Species-Specific Simulations.
    Wu T; Hajiaghamemar M; Giudice JS; Alshareef A; Margulies SS; Panzer MB
    J Neurotrauma; 2021 Jun; 38(13):1879-1888. PubMed ID: 33446011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of a risk model through the fusion of experimental data and finite element modeling: Application to car crash-induced TBI.
    Ahmadisoleymani SS; Missoum S
    Comput Methods Biomech Biomed Engin; 2019 May; 22(6):605-619. PubMed ID: 30773915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Single-Degree-of-Freedom Mechanical Model for Predicting Strain-Based Brain Injury Responses.
    Gabler LF; Joodaki H; Crandall JR; Panzer MB
    J Biomech Eng; 2018 Mar; 140(3):. PubMed ID: 29114772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.