BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31856671)

  • 1. IntaRNAhelix-composing RNA-RNA interactions from stable inter-molecular helices boosts bacterial sRNA target prediction.
    Gelhausen R; Will S; Hofacker IL; Backofen R; Raden M
    J Bioinform Comput Biol; 2019 Oct; 17(5):1940009. PubMed ID: 31856671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of various seed, accessibility and interaction constraints on sRNA target prediction- a systematic assessment.
    Raden M; Müller T; Mautner S; Gelhausen R; Backofen R
    BMC Bioinformatics; 2020 Jan; 21(1):15. PubMed ID: 31931703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. sRNA Target Prediction Organizing Tool (SPOT) Integrates Computational and Experimental Data To Facilitate Functional Characterization of Bacterial Small RNAs.
    King AM; Vanderpool CK; Degnan PH
    mSphere; 2019 Jan; 4(1):. PubMed ID: 30700509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions.
    Busch A; Richter AS; Backofen R
    Bioinformatics; 2008 Dec; 24(24):2849-56. PubMed ID: 18940824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of consensus RNA secondary structures including pseudoknots.
    Witwer C; Hofacker IL; Stadler PF
    IEEE/ACM Trans Comput Biol Bioinform; 2004; 1(2):66-77. PubMed ID: 17048382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic programming algorithms for RNA structure prediction with binding sites.
    Poolsap U; Kato Y; Akutsu T
    Pac Symp Biocomput; 2010; ():98-107. PubMed ID: 19908362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partition function and base pairing probabilities for RNA-RNA interaction prediction.
    Huang FW; Qin J; Reidys CM; Stadler PF
    Bioinformatics; 2009 Oct; 25(20):2646-54. PubMed ID: 19671692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting RNA-RNA interactions in E. coli using a modified CLASH method.
    Liu T; Zhang K; Xu S; Wang Z; Fu H; Tian B; Zheng X; Li W
    BMC Genomics; 2017 May; 18(1):343. PubMed ID: 28468647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and Interaction Prediction in Prokaryotic RNA Biology.
    Wright PR; Mann M; Backofen R
    Microbiol Spectr; 2018 Apr; 6(2):. PubMed ID: 29676245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An assessment of bacterial small RNA target prediction programs.
    Pain A; Ott A; Amine H; Rochat T; Bouloc P; Gautheret D
    RNA Biol; 2015; 12(5):509-13. PubMed ID: 25760244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous prediction of RNA secondary structure and helix coaxial stacking.
    Shareghi P; Wang Y; Malmberg R; Cai L
    BMC Genomics; 2012 Jun; 13 Suppl 3(Suppl 3):S7. PubMed ID: 22759616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Swellix: a computational tool to explore RNA conformational space.
    Sloat N; Liu JW; Schroeder SJ
    BMC Bioinformatics; 2017 Nov; 18(1):504. PubMed ID: 29157200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions.
    Vazquez-Anderson J; Mihailovic MK; Baldridge KC; Reyes KG; Haning K; Cho SH; Amador P; Powell WB; Contreras LM
    Nucleic Acids Res; 2017 May; 45(9):5523-5538. PubMed ID: 28334800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-dimensional replica-exchange molecular dynamics method for simulating RNA folding using sparse experimental restraints.
    Ebrahimi P; Kaur S; Baronti L; Petzold K; Chen AA
    Methods; 2019 Jun; 162-163():96-107. PubMed ID: 31059830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RnaPredict--an evolutionary algorithm for RNA secondary structure prediction.
    Wiese K; Deschenes A; Hendriks A
    IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(1):25-41. PubMed ID: 18245873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SARNA-Predict: accuracy improvement of RNA secondary structure prediction using permutation-based simulated annealing.
    Tsang HH; Wiese KC
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(4):727-40. PubMed ID: 21030739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using temperature effects to predict the interactions between two RNAs.
    Ganjtabesh M; Montaseri S; Zare-Mirakabad F
    J Theor Biol; 2015 Jan; 364():98-102. PubMed ID: 25218429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational prediction of sRNAs and their targets in bacteria.
    Backofen R; Hess WR
    RNA Biol; 2010; 7(1):33-42. PubMed ID: 20061798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real time kinetic studies of the interaction between folded antisense and target RNAs using surface plasmon resonance.
    Nordgren S; Slagter-Jäger JG; Wagner GH
    J Mol Biol; 2001 Jul; 310(5):1125-34. PubMed ID: 11502000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel and efficient RNA secondary structure prediction using hierarchical folding.
    Jabbari H; Condon A; Zhao S
    J Comput Biol; 2008 Mar; 15(2):139-63. PubMed ID: 18312147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.