These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
383 related articles for article (PubMed ID: 31856727)
1. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE). Ma T; Zhang A BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727 [TBL] [Abstract][Full Text] [Related]
2. Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer. Tong L; Wu H; Wang MD Methods; 2021 May; 189():74-85. PubMed ID: 32763377 [TBL] [Abstract][Full Text] [Related]
3. AVBAE-MODFR: A novel deep learning framework of embedding and feature selection on multi-omics data for pan-cancer classification. Li M; Guo H; Wang K; Kang C; Yin Y; Zhang H Comput Biol Med; 2024 Jul; 177():108614. PubMed ID: 38796884 [TBL] [Abstract][Full Text] [Related]
4. MOSDNET: A multi-omics classification framework using simplified multi-view deep discriminant representation learning and dynamic edge GCN with multi-task learning. Li M; Chen Z; Deng S; Wang L; Yu X Comput Biol Med; 2024 Oct; 181():109040. PubMed ID: 39168014 [TBL] [Abstract][Full Text] [Related]
5. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction. Chai H; Zhou X; Zhang Z; Rao J; Zhao H; Yang Y Comput Biol Med; 2021 Jul; 134():104481. PubMed ID: 33989895 [TBL] [Abstract][Full Text] [Related]
6. MODILM: towards better complex diseases classification using a novel multi-omics data integration learning model. Zhong Y; Peng Y; Lin Y; Chen D; Zhang H; Zheng W; Chen Y; Wu C BMC Med Inform Decis Mak; 2023 May; 23(1):82. PubMed ID: 37147619 [TBL] [Abstract][Full Text] [Related]
7. A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data. Xu J; Wu P; Chen Y; Meng Q; Dawood H; Dawood H BMC Bioinformatics; 2019 Oct; 20(1):527. PubMed ID: 31660856 [TBL] [Abstract][Full Text] [Related]
8. Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis. Tong L; Mitchel J; Chatlin K; Wang MD BMC Med Inform Decis Mak; 2020 Sep; 20(1):225. PubMed ID: 32933515 [TBL] [Abstract][Full Text] [Related]
9. Multi-omics integration method based on attention deep learning network for biomedical data classification. Gong P; Cheng L; Zhang Z; Meng A; Li E; Chen J; Zhang L Comput Methods Programs Biomed; 2023 Apr; 231():107377. PubMed ID: 36739624 [TBL] [Abstract][Full Text] [Related]
10. MOGAT: A Multi-Omics Integration Framework Using Graph Attention Networks for Cancer Subtype Prediction. Tanvir RB; Islam MM; Sobhan M; Luo D; Mondal AM Int J Mol Sci; 2024 Feb; 25(5):. PubMed ID: 38474033 [TBL] [Abstract][Full Text] [Related]
11. Local augmented graph neural network for multi-omics cancer prognosis prediction and analysis. Zhang Y; Xiong S; Wang Z; Liu Y; Luo H; Li B; Zou Q Methods; 2023 May; 213():1-9. PubMed ID: 36933628 [TBL] [Abstract][Full Text] [Related]
12. MoGCN: A Multi-Omics Integration Method Based on Graph Convolutional Network for Cancer Subtype Analysis. Li X; Ma J; Leng L; Han M; Li M; He F; Zhu Y Front Genet; 2022; 13():806842. PubMed ID: 35186034 [TBL] [Abstract][Full Text] [Related]
13. Deep learning-based approaches for multi-omics data integration and analysis. Ballard JL; Wang Z; Li W; Shen L; Long Q BioData Min; 2024 Oct; 17(1):38. PubMed ID: 39358793 [TBL] [Abstract][Full Text] [Related]
14. PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data. Lemsara A; Ouadfel S; Fröhlich H BMC Bioinformatics; 2020 Apr; 21(1):146. PubMed ID: 32299344 [TBL] [Abstract][Full Text] [Related]
15. Machine learning: its challenges and opportunities in plant system biology. Hesami M; Alizadeh M; Jones AMP; Torkamaneh D Appl Microbiol Biotechnol; 2022 May; 106(9-10):3507-3530. PubMed ID: 35575915 [TBL] [Abstract][Full Text] [Related]
16. Geometric graph neural networks on multi-omics data to predict cancer survival outcomes. Zhu J; Oh JH; Simhal AK; Elkin R; Norton L; Deasy JO; Tannenbaum A Comput Biol Med; 2023 Sep; 163():107117. PubMed ID: 37329617 [TBL] [Abstract][Full Text] [Related]
17. XOmiVAE: an interpretable deep learning model for cancer classification using high-dimensional omics data. Withnell E; Zhang X; Sun K; Guo Y Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34402865 [TBL] [Abstract][Full Text] [Related]
18. A survey on single and multi omics data mining methods in cancer data classification. Momeni Z; Hassanzadeh E; Saniee Abadeh M; Bellazzi R J Biomed Inform; 2020 Jul; 107():103466. PubMed ID: 32525020 [TBL] [Abstract][Full Text] [Related]
19. Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping. Madhumita ; Paul S Comput Biol Med; 2022 Sep; 148():105832. PubMed ID: 35834966 [TBL] [Abstract][Full Text] [Related]
20. Graph Neural Networks With Multiple Prior Knowledge for Multi-Omics Data Analysis. Xiao S; Lin H; Wang C; Wang S; Rajapakse JC IEEE J Biomed Health Inform; 2023 Sep; 27(9):4591-4600. PubMed ID: 37307177 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]