BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 31856867)

  • 1. Mortaparib, a novel dual inhibitor of mortalin and PARP1, is a potential drug candidate for ovarian and cervical cancers.
    Putri JF; Bhargava P; Dhanjal JK; Yaguchi T; Sundar D; Kaul SC; Wadhwa R
    J Exp Clin Cancer Res; 2019 Dec; 38(1):499. PubMed ID: 31856867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a new member of Mortaparib class of inhibitors that target mortalin and PARP1.
    Meidinna HN; Shefrin S; Sari AN; Zhang H; Dhanjal JK; Kaul SC; Sundar D; Wadhwa R
    Front Cell Dev Biol; 2022; 10():918970. PubMed ID: 36172283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and Characterization of Mortaparib
    Sari AN; Elwakeel A; Dhanjal JK; Kumar V; Sundar D; Kaul SC; Wadhwa R
    Cancers (Basel); 2021 Feb; 13(4):. PubMed ID: 33671256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutant p53
    Elwakeel A; Sari AN; Dhanjal JK; Meidinna HN; Sundar D; Kaul SC; Wadhwa R
    Cancers (Basel); 2021 Jun; 13(12):. PubMed ID: 34207240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational and in vitro experimental analyses of the anti-COVID-19 potential of Mortaparib and MortaparibPlus.
    Kumar V; Sari AN; Meidinna HN; Dhanjal JK; Subramani C; Basu B; Kaul SC; Vrati S; Sundar D; Wadhwa R
    Biosci Rep; 2021 Oct; 41(10):. PubMed ID: 34647577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery, mechanism and metabolism studies of 2,3-difluorophenyl-linker-containing PARP1 inhibitors with enhanced in vivo efficacy for cancer therapy.
    Chen W; Guo N; Qi M; Dai H; Hong M; Guan L; Huan X; Song S; He J; Wang Y; Xi Y; Yang X; Shen Y; Su Y; Sun Y; Gao Y; Chen Y; Ding J; Tang Y; Ren G; Miao Z; Li J
    Eur J Med Chem; 2017 Sep; 138():514-531. PubMed ID: 28692916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure-based discovery of a novel synthesized PARP1 inhibitor (OL-1) with apoptosis-inducing mechanisms in triple-negative breast cancer.
    Fu L; Wang S; Wang X; Wang P; Zheng Y; Yao D; Guo M; Zhang L; Ouyang L
    Sci Rep; 2016 Dec; 6(1):3. PubMed ID: 28442756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting Mortalin by Embelin Causes Activation of Tumor Suppressor p53 and Deactivation of Metastatic Signaling in Human Breast Cancer Cells.
    Nigam N; Grover A; Goyal S; Katiyar SP; Bhargava P; Wang PC; Sundar D; Kaul SC; Wadhwa R
    PLoS One; 2015; 10(9):e0138192. PubMed ID: 26376435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of apoptosis in MDA-MB-231 breast cancer cells by a PARP1-targeting PROTAC small molecule.
    Zhao Q; Lan T; Su S; Rao Y
    Chem Commun (Camb); 2019 Jan; 55(3):369-372. PubMed ID: 30540295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics-based identification of novel natural mortalin-p53 abrogators as anticancer agents.
    Nagpal N; Goyal S; Dhanjal JK; Ye L; Kaul SC; Wadhwa R; Chaturvedi R; Grover A
    J Recept Signal Transduct Res; 2017 Feb; 37(1):8-16. PubMed ID: 27380217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel ovarian cancer maintenance therapy targeted at mortalin and mutant p53.
    Ramraj SK; Elayapillai SP; Pelikan RC; Zhao YD; Isingizwe ZR; Kennedy AL; Lightfoot SA; Benbrook DM
    Int J Cancer; 2020 Aug; 147(4):1086-1097. PubMed ID: 31845320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(ADP-ribose)polymerase (PARP) inhibition and anticancer activity of simmiparib, a new inhibitor undergoing clinical trials.
    Yuan B; Ye N; Song SS; Wang YT; Song Z; Chen HD; Chen CH; Huan XJ; Wang YQ; Su Y; Shen YY; Sun YM; Yang XY; Chen Y; Guo SY; Gan Y; Gao ZW; Chen XY; Ding J; He JX; Zhang A; Miao ZH
    Cancer Lett; 2017 Feb; 386():47-56. PubMed ID: 27847302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, synthesis, and biological evaluation of novel chrysin derivatives as poly(ADP-ribose) polymerase 1 (PARP1) inhibitors for the treatment of breast cancer.
    Yang Y; Tong J; Xie X; Cao H; Fu Y; Luo Y; Liu S; Chen W; Yang N
    Chin J Nat Med; 2024 May; 22(5):455-465. PubMed ID: 38796218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MAPK4 deletion enhances radiation effects and triggers synergistic lethality with simultaneous PARP1 inhibition in cervical cancer.
    Tian S; Lou L; Tian M; Lu G; Tian J; Chen X
    J Exp Clin Cancer Res; 2020 Jul; 39(1):143. PubMed ID: 32711558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and synthesis of some barbituric and 1,3-dimethylbarbituric acid derivatives: A non-classical scaffold for potential PARP1 inhibitors.
    Eldin A Osman E; Hanafy NS; George RF; El-Moghazy SM
    Bioorg Chem; 2020 Nov; 104():104198. PubMed ID: 32920355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BTH-8, a novel poly (ADP-ribose) polymerase-1 (PARP-1) inhibitor, causes DNA double-strand breaks and exhibits anticancer activities in vitro and in vivo.
    Guo C; Zhang F; Wu X; Yu X; Wu X; Shi D; Wang L
    Int J Biol Macromol; 2020 May; 150():238-245. PubMed ID: 32057845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A DNA-encoded library for the identification of natural product binders that modulate poly (ADP-ribose) polymerase 1, a validated anti-cancer target.
    Li J; Li Y; Lu F; Liu L; Ji Q; Song K; Yin Q; Lerner RA; Yang G; Xu H; Ma P
    Biochem Biophys Res Commun; 2020 Dec; 533(2):241-248. PubMed ID: 32381359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of isoquinolinone and naphthyridinone-based inhibitors of poly(ADP-ribose) polymerase-1 (PARP1) as anticancer agents: Structure activity relationship and preclinical characterization.
    Karche NP; Bhonde M; Sinha N; Jana G; Kukreja G; Kurhade SP; Jagdale AR; Tilekar AR; Hajare AK; Jadhav GR; Gupta NR; Limaye R; Khedkar N; Thube BR; Shaikh JS; Rao Irlapati N; Phukan S; Gole G; Bommakanti A; Khanwalkar H; Pawar Y; Kale R; Kumar R; Gupta R; Praveen Kumar VR; Wahid S; Francis A; Bhat T; Kamble N; Patil V; Nigade PB; Modi D; Pawar S; Naidu S; Volam H; Pagdala V; Mallurwar S; Goyal H; Bora P; Ahirrao P; Singh M; Kamalakannan P; Naik KR; Kumar P; Powar RG; Shankar RB; Bernstein PR; Gundu J; Nemmani K; Narasimham L; George KS; Sharma S; Bakhle D; Kamboj RK; Palle VP
    Bioorg Med Chem; 2020 Dec; 28(24):115819. PubMed ID: 33120078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medicinal chemistry approaches of poly ADP-Ribose polymerase 1 (PARP1) inhibitors as anticancer agents - A recent update.
    Jain PG; Patel BD
    Eur J Med Chem; 2019 Mar; 165():198-215. PubMed ID: 30684797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of Withaferin-A and CAPE Provides Superior Anticancer Potency: Bioinformatics and Experimental Evidence to Their Molecular Targets and Mechanism of Action.
    Sari AN; Bhargava P; Dhanjal JK; Putri JF; Radhakrishnan N; Shefrin S; Ishida Y; Terao K; Sundar D; Kaul SC; Wadhwa R
    Cancers (Basel); 2020 May; 12(5):. PubMed ID: 32380701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.