These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 31857424)

  • 21. Membrane microdomains in immunoreceptor signaling.
    Horejsi V; Hrdinka M
    FEBS Lett; 2014 Aug; 588(15):2392-7. PubMed ID: 24911201
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolically Biotinylated Reporters for Electron Microscopic Imaging of Cytoplasmic Membrane Microdomains.
    Krager KJ; Koland JG
    Methods Mol Biol; 2016; 1376():87-96. PubMed ID: 26552677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plant lipids: Key players of plasma membrane organization and function.
    Mamode Cassim A; Gouguet P; Gronnier J; Laurent N; Germain V; Grison M; Boutté Y; Gerbeau-Pissot P; Simon-Plas F; Mongrand S
    Prog Lipid Res; 2019 Jan; 73():1-27. PubMed ID: 30465788
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crosslinking a lipid raft component triggers liquid ordered-liquid disordered phase separation in model plasma membranes.
    Hammond AT; Heberle FA; Baumgart T; Holowka D; Baird B; Feigenson GW
    Proc Natl Acad Sci U S A; 2005 May; 102(18):6320-5. PubMed ID: 15851688
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The plasma membrane as a capacitor for energy and metabolism.
    Ray S; Kassan A; Busija AR; Rangamani P; Patel HH
    Am J Physiol Cell Physiol; 2016 Feb; 310(3):C181-92. PubMed ID: 26771520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular composition of functional microdomains in bacterial membranes.
    Lopez D
    Chem Phys Lipids; 2015 Nov; 192():3-11. PubMed ID: 26320704
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lipid microdomains, lipid translocation and the organization of intracellular membrane transport (Review).
    Holthuis JC; van Meer G; Huitema K
    Mol Membr Biol; 2003; 20(3):231-41. PubMed ID: 12893531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Across the great divide: the plant cell surface continuum.
    McKenna JF; Tolmie AF; Runions J
    Curr Opin Plant Biol; 2014 Dec; 22():132-140. PubMed ID: 25460078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The cell wall regulates dynamics and size of plasma-membrane nanodomains in
    McKenna JF; Rolfe DJ; Webb SED; Tolmie AF; Botchway SW; Martin-Fernandez ML; Hawes C; Runions J
    Proc Natl Acad Sci U S A; 2019 Jun; 116(26):12857-12862. PubMed ID: 31182605
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Domain formation in the plasma membrane: roles of nonequilibrium lipid transport and membrane proteins.
    Fan J; Sammalkorpi M; Haataja M
    Phys Rev Lett; 2008 May; 100(17):178102. PubMed ID: 18518341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detecting microdomains in intact cell membranes.
    Lagerholm BC; Weinreb GE; Jacobson K; Thompson NL
    Annu Rev Phys Chem; 2005; 56():309-36. PubMed ID: 15796703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sphingomyelin Stereoisomers Reveal That Homophilic Interactions Cause Nanodomain Formation.
    Yano Y; Hanashima S; Yasuda T; Tsuchikawa H; Matsumori N; Kinoshita M; Al Sazzad MA; Slotte JP; Murata M
    Biophys J; 2018 Oct; 115(8):1530-1540. PubMed ID: 30274830
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The MAL proteolipid restricts detergent-mediated membrane pore expansion and percolation.
    Dukhovny A; Goldstein Magal L; Hirschberg K
    Mol Membr Biol; 2006; 23(3):245-57. PubMed ID: 16785208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identifying optimal lipid raft characteristics required to promote nanoscale protein-protein interactions on the plasma membrane.
    Nicolau DV; Burrage K; Parton RG; Hancock JF
    Mol Cell Biol; 2006 Jan; 26(1):313-23. PubMed ID: 16354701
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New insights into the organization of plasma membrane and its role in signal transduction.
    Suzuki KG
    Int Rev Cell Mol Biol; 2015; 317():67-96. PubMed ID: 26008784
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteolipid protein interactions in transfectants: implications for myelin assembly.
    Sinoway MP; Kitagawa K; Timsit S; Hashim GA; Colman DR
    J Neurosci Res; 1994 Apr; 37(5):551-62. PubMed ID: 7518004
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigating the Nanodomain Organization of Rhodopsin in Native Membranes by Atomic Force Microscopy.
    Senapati S; Park PS
    Methods Mol Biol; 2019; 1886():61-74. PubMed ID: 30374862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lipid-protein interplay and lateral organization in biomembranes.
    Nyholm TK
    Chem Phys Lipids; 2015 Jul; 189():48-55. PubMed ID: 26036778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sphingolipids related to apoptosis from the point of view of membrane structure and topology.
    van Blitterswijk WJ; van der Luit AH; Caan W; Verheij M; Borst J
    Biochem Soc Trans; 2001 Nov; 29(Pt 6):819-24. PubMed ID: 11709081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Giant plasma membrane vesicles: models for understanding membrane organization.
    Levental KR; Levental I
    Curr Top Membr; 2015; 75():25-57. PubMed ID: 26015280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.