These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 31857623)
41. Ontogenetic shifts in intraguild predation on thrips by phytoseiid mites: the relevance of body size and diet specialization. Walzer A; Paulus HF; Schausberger P Bull Entomol Res; 2004 Dec; 94(6):577-84. PubMed ID: 15541196 [TBL] [Abstract][Full Text] [Related]
42. Why are phytoseiid predatory mites not effectively controlling Echinothrips americanus? Vangansbeke D; Van Doren E; Duarte MVA; Pijnakker J; Wäckers F; De Clercq P Exp Appl Acarol; 2023 Jun; 90(1-2):1-17. PubMed ID: 37285108 [TBL] [Abstract][Full Text] [Related]
43. Combined application of entomopathogenic fungi and predatory mites for biological control of Tetranychus urticae on chrysanthemum. Hernández-Valencia V; Santillán-Galicia MT; Guzmán-Franco AW; Rodríguez-Leyva E; Santillán-Ortega C Pest Manag Sci; 2024 Sep; 80(9):4199-4206. PubMed ID: 38597427 [TBL] [Abstract][Full Text] [Related]
44. Benefit-cost Trade-offs of Early Learning in Foraging Predatory Mites Amblyseius Swirskii. Christiansen IC; Szin S; Schausberger P Sci Rep; 2016 Mar; 6():23571. PubMed ID: 27006149 [TBL] [Abstract][Full Text] [Related]
45. Compatibility of spinosad with predaceous mites (Acari) used to control Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Rahman T; Spafford H; Broughton S Pest Manag Sci; 2011 Aug; 67(8):993-1003. PubMed ID: 21452165 [TBL] [Abstract][Full Text] [Related]
46. Juvenile prey induce antipredator behaviour in adult predators. de Almeida ÂA; Janssen A Exp Appl Acarol; 2013 Mar; 59(3):275-82. PubMed ID: 22923143 [TBL] [Abstract][Full Text] [Related]
47. Biological control of broad mites (Polyphagotarsonemus latus) with the generalist predator Amblyseius swirskii. van Maanen R; Vila E; Sabelis MW; Janssen A Exp Appl Acarol; 2010 Sep; 52(1):29-34. PubMed ID: 20191312 [TBL] [Abstract][Full Text] [Related]
49. Field efficacy of a biopesticide and a predatory mite for suppression of Scirtothrips dorsalis (Thysanoptera: Thripidae) in strawberry. Lahiri S; Kaur G; Busuulwa A J Econ Entomol; 2024 Aug; 117(4):1623-1627. PubMed ID: 38940429 [TBL] [Abstract][Full Text] [Related]
50. Combined Use of Predatory Mirids With Amblyseius swirskii (Acari: Phytoseiidae) to Enhance Pest Management in Sweet Pepper. Bouagga S; Urbaneja A; Pérez-Hedo M J Econ Entomol; 2018 May; 111(3):1112-1120. PubMed ID: 29596645 [TBL] [Abstract][Full Text] [Related]
51. Insecticide Rotation Programs with Entomopathogenic Organisms for Suppression of Western Flower Thrips (Thysanoptera: Thripidae) Adult Populations under Greenhouse Conditions. Kivett JM; Cloyd RA; Bello NM J Econ Entomol; 2015 Aug; 108(4):1936-46. PubMed ID: 26470338 [TBL] [Abstract][Full Text] [Related]
52. Predatory interactions between prey affect patch selection by predators. Choh Y; Sabelis MW; Janssen A Behav Ecol Sociobiol; 2017; 71(4):66. PubMed ID: 28356611 [TBL] [Abstract][Full Text] [Related]
53. Age-Dependent Functional and Numerical Responses of Neoseiulus cucumeris (Acari: Phytoseiidae) on Two-Spotted Spider Mite (Acari: Tetranychidae). Dalir S; Hajiqanbar H; Fathipour Y; Khanamani M J Econ Entomol; 2021 Feb; 114(1):50-61. PubMed ID: 33300583 [TBL] [Abstract][Full Text] [Related]
54. Impact of factitious foods and prey on the oviposition of the predatory mites Gaeolaelaps aculeifer and Stratiolaelaps scimitus (Acari: Laelapidae). Navarro-Campos C; Wäckers FL; Pekas A Exp Appl Acarol; 2016 Sep; 70(1):69-78. PubMed ID: 27388446 [TBL] [Abstract][Full Text] [Related]
55. Entomopathogenic fungal conidia marginally affect the behavior of the predators Orius majusculus (Hemiptera: Anthocoridae) and Phytoseiulus persimilis (Acari: Phytoseiidae) foraging for healthy Tetranychus urticae (Acari: Tetranychidae). Jacobsen SK; Klingen I; Eilenberg J; Markussen B; Sigsgaard L Exp Appl Acarol; 2019 Dec; 79(3-4):299-307. PubMed ID: 31748909 [TBL] [Abstract][Full Text] [Related]
56. Cold-born killers: exploiting temperature-size rule enhances predation capacity of a predatory mite. Vangansbeke D; Duarte MV; Gobin B; Tirry L; Wäckers F; De Clercq P Pest Manag Sci; 2020 May; 76(5):1841-1846. PubMed ID: 31825551 [TBL] [Abstract][Full Text] [Related]
57. Neoseiulus mites as biological control agents against Megalurothrips usitatus (Thysanoptera: Thripidae) and Frankliniella intonsa (Thysanoptera: Thripidae) on cowpea crop: laboratory to field. Zhang YF; Zang LS; Guo LH; Sukhwinder S; Wu SY; Yang X; Tang LD J Econ Entomol; 2024 Aug; 117(4):1367-1376. PubMed ID: 38780155 [TBL] [Abstract][Full Text] [Related]
58. Population dynamics of thrips prey and their mite predators in a refuge. Magalhães S; van Rijn PC; Montserrat M; Pallini A; Sabelis MW Oecologia; 2007 Jan; 150(4):557-68. PubMed ID: 16964498 [TBL] [Abstract][Full Text] [Related]
59. Factors affecting the distribution of a predatory mite on greenhouse sweet pepper. Weintraub PG; Kleitman S; Alchanatis V; Palevsky E Exp Appl Acarol; 2007; 42(1):23-35. PubMed ID: 17534730 [TBL] [Abstract][Full Text] [Related]
60. Biological control of strawberry tarsonemid mite Phytonemus pallidus and two-spotted spider mite Tetranychus urticae on strawberry in the UK using species of Neoseiulus (Amblyseius) (Acari: Phytoseiidae). Easterbrook MA; Fitzgerald JD; Solomon MG Exp Appl Acarol; 2001; 25(1):25-36. PubMed ID: 11508527 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]