These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 31857632)

  • 1. Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis.
    Nakamoto T; Takahashi W; Haga A; Takahashi S; Kiryu S; Nawa K; Ohta T; Ozaki S; Nozawa Y; Tanaka S; Mukasa A; Nakagawa K
    Sci Rep; 2019 Dec; 9(1):19411. PubMed ID: 31857632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading.
    Inano R; Oishi N; Kunieda T; Arakawa Y; Yamao Y; Shibata S; Kikuchi T; Fukuyama H; Miyamoto S
    Neuroimage Clin; 2014; 5():396-407. PubMed ID: 25180159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiomics strategy for glioma grading using texture features from multiparametric MRI.
    Tian Q; Yan LF; Zhang X; Zhang X; Hu YC; Han Y; Liu ZC; Nan HY; Sun Q; Sun YZ; Yang Y; Yu Y; Zhang J; Hu B; Xiao G; Chen P; Tian S; Xu J; Wang W; Cui GB
    J Magn Reson Imaging; 2018 Dec; 48(6):1518-1528. PubMed ID: 29573085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Value of Enhanced MR Radiomics in Estimating the IDH1 Genotype in High-Grade Gliomas.
    Niu L; Feng WH; Duan CF; Liu YC; Liu JH; Liu XJ
    Biomed Res Int; 2020; 2020():4630218. PubMed ID: 33163535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conventional magnetic resonance imaging-based radiomic signature predicts telomerase reverse transcriptase promoter mutation status in grade II and III gliomas.
    Jiang C; Kong Z; Zhang Y; Liu S; Liu Z; Chen W; Liu P; Liu D; Wang Y; Lyu Y; Zhao D; Wang Y; You H; Feng F; Ma W
    Neuroradiology; 2020 Jul; 62(7):803-813. PubMed ID: 32239241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging.
    Hashido T; Saito S; Ishida T
    J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):606-613. PubMed ID: 34270479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MRI features predict p53 status in lower-grade gliomas via a machine-learning approach.
    Li Y; Qian Z; Xu K; Wang K; Fan X; Li S; Jiang T; Liu X; Wang Y
    Neuroimage Clin; 2018; 17():306-311. PubMed ID: 29527478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fusion Radiomics Features from Conventional MRI Predict MGMT Promoter Methylation Status in Lower Grade Gliomas.
    Jiang C; Kong Z; Liu S; Feng S; Zhang Y; Zhu R; Chen W; Wang Y; Lyu Y; You H; Zhao D; Wang R; Wang Y; Ma W; Feng F
    Eur J Radiol; 2019 Dec; 121():108714. PubMed ID: 31704598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Convolutional Radiomic Features on Diffusion Tensor Images for Classification of Glioma Grades.
    Zhang Z; Xiao J; Wu S; Lv F; Gong J; Jiang L; Yu R; Luo T
    J Digit Imaging; 2020 Aug; 33(4):826-837. PubMed ID: 32040669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics for Prediction of H3K27M Mutation in Midline Gliomas.
    Kandemirli SG; Kocak B; Naganawa S; Ozturk K; Yip SSF; Chopra S; Rivetti L; Aldine AS; Jones K; Cayci Z; Moritani T; Sato TS
    World Neurosurg; 2021 Jul; 151():e78-e85. PubMed ID: 33819703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma.
    Kim M; Jung SY; Park JE; Jo Y; Park SY; Nam SJ; Kim JH; Kim HS
    Eur Radiol; 2020 Apr; 30(4):2142-2151. PubMed ID: 31828414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature.
    Li Y; Liu X; Qian Z; Sun Z; Xu K; Wang K; Fan X; Zhang Z; Li S; Wang Y; Jiang T
    Eur Radiol; 2018 Jul; 28(7):2960-2968. PubMed ID: 29404769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glioma grading using a machine-learning framework based on optimized features obtained from T
    Sengupta A; Ramaniharan AK; Gupta RK; Agarwal S; Singh A
    J Magn Reson Imaging; 2019 Oct; 50(4):1295-1306. PubMed ID: 30895704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasive Assessment of O(6)-Methylguanine-DNA Methyltransferase Promoter Methylation Status in World Health Organization Grade II-IV Glioma Using Histogram Analysis of Inflow-Based Vascular-Space-Occupancy Combined with Structural Magnetic Resonance Imaging.
    He W; Li X; Hua J; Liao S; Guo L; Xiao X; Liu X; Zhou J; Wang W; Xu Y; Wu Y
    J Magn Reson Imaging; 2021 Jul; 54(1):227-236. PubMed ID: 33590929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving Noninvasive Classification of Molecular Subtypes of Adult Gliomas With Diffusion-Weighted MR Imaging: An Externally Validated Machine Learning Algorithm.
    Guo Y; Ma Z; Pei D; Duan W; Guo Y; Liu Z; Guan F; Wang Z; Xing A; Guo Z; Luo L; Wang W; Yu B; Zhou J; Ji Y; Yan D; Cheng J; Liu X; Yan J; Zhang Z
    J Magn Reson Imaging; 2023 Oct; 58(4):1234-1242. PubMed ID: 36727433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grading of Gliomas by Using Radiomic Features on Multiple Magnetic Resonance Imaging (MRI) Sequences.
    Qin JB; Liu Z; Zhang H; Shen C; Wang XC; Tan Y; Wang S; Wu XF; Tian J
    Med Sci Monit; 2017 May; 23():2168-2178. PubMed ID: 28478462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction.
    Choi YS; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Jain R; Lee SK
    Eur Radiol; 2020 Jul; 30(7):3834-3842. PubMed ID: 32162004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiological model based on the standard magnetic resonance sequences for detecting methylguanine methyltransferase methylation in glioma using texture analysis.
    Huang WY; Wen LH; Wu G; Pang PP; Ogbuji R; Zhang CC; Chen F; Zhao JN
    Cancer Sci; 2021 Jul; 112(7):2835-2844. PubMed ID: 33932065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glioma: Application of histogram analysis of pharmacokinetic parameters from T1-weighted dynamic contrast-enhanced MR imaging to tumor grading.
    Jung SC; Yeom JA; Kim JH; Ryoo I; Kim SC; Shin H; Lee AL; Yun TJ; Park CK; Sohn CH; Park SH; Choi SH
    AJNR Am J Neuroradiol; 2014 Jun; 35(6):1103-10. PubMed ID: 24384119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An initial experience of machine learning based on multi-sequence texture parameters in magnetic resonance imaging to differentiate glioblastoma from brain metastases.
    Tateishi M; Nakaura T; Kitajima M; Uetani H; Nakagawa M; Inoue T; Kuroda JI; Mukasa A; Yamashita Y
    J Neurol Sci; 2020 Mar; 410():116514. PubMed ID: 31869660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.