These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 31857632)

  • 41. Radiomics Analysis for Glioma Malignancy Evaluation Using Diffusion Kurtosis and Tensor Imaging.
    Takahashi S; Takahashi W; Tanaka S; Haga A; Nakamoto T; Suzuki Y; Mukasa A; Takayanagi S; Kitagawa Y; Hana T; Nejo T; Nomura M; Nakagawa K; Saito N
    Int J Radiat Oncol Biol Phys; 2019 Nov; 105(4):784-791. PubMed ID: 31344432
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Magnetic resonance imaging-based radiomic features for extrapolating infiltration levels of immune cells in lower-grade gliomas.
    Zhang X; Liu S; Zhao X; Shi X; Li J; Guo J; Niedermann G; Luo R; Zhang X
    Strahlenther Onkol; 2020 Oct; 196(10):913-921. PubMed ID: 32025804
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-order radiomics features based on T2 FLAIR MRI predict multiple glioma immunohistochemical features: A more precise and personalized gliomas management.
    Li J; Liu S; Qin Y; Zhang Y; Wang N; Liu H
    PLoS One; 2020; 15(1):e0227703. PubMed ID: 31968004
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Noninvasive Prediction of IDH1 Mutation and ATRX Expression Loss in Low-Grade Gliomas Using Multiparametric MR Radiomic Features.
    Ren Y; Zhang X; Rui W; Pang H; Qiu T; Wang J; Xie Q; Jin T; Zhang H; Chen H; Zhang Y; Lu H; Yao Z; Zhang J; Feng X
    J Magn Reson Imaging; 2019 Mar; 49(3):808-817. PubMed ID: 30194745
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Radiomics Nomogram Building From Multiparametric MRI to Predict Grade in Patients With Glioma: A Cohort Study.
    Wang Q; Li Q; Mi R; Ye H; Zhang H; Chen B; Li Y; Huang G; Xia J
    J Magn Reson Imaging; 2019 Mar; 49(3):825-833. PubMed ID: 30260592
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The efficacy of using a multiparametric magnetic resonance imaging-based radiomics model to distinguish glioma recurrence from pseudoprogression.
    Fu FX; Cai QL; Li G; Wu XJ; Hong L; Chen WS
    Magn Reson Imaging; 2024 Sep; 111():168-178. PubMed ID: 38729227
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thin-Slice Magnetic Resonance Imaging-Based Radiomics Signature Predicts Chromosomal 1p/19q Co-deletion Status in Grade II and III Gliomas.
    Kong Z; Jiang C; Zhang Y; Liu S; Liu D; Liu Z; Chen W; Liu P; Yang T; Lyu Y; Zhao D; You H; Wang Y; Ma W; Feng F
    Front Neurol; 2020; 11():551771. PubMed ID: 33192984
    [No Abstract]   [Full Text] [Related]  

  • 48. Radiomic features from dynamic susceptibility contrast perfusion-weighted imaging improve the three-class prediction of molecular subtypes in patients with adult diffuse gliomas.
    Pei D; Guan F; Hong X; Liu Z; Wang W; Qiu Y; Duan W; Wang M; Sun C; Wang W; Wang X; Guo Y; Wang Z; Liu Z; Xing A; Guo Z; Luo L; Liu X; Cheng J; Zhang B; Zhang Z; Yan J
    Eur Radiol; 2023 May; 33(5):3455-3466. PubMed ID: 36853347
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Predicting histological grade in pediatric glioma using multiparametric radiomics and conventional MRI features.
    Zhou T; Qiao B; Peng B; Liu Y; Gong Z; Kang M; He Y; Pang C; Dai Y; Sheng M
    Sci Rep; 2024 Jun; 14(1):13683. PubMed ID: 38871755
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Glioma grading prediction using multiparametric magnetic resonance imaging-based radiomics combined with proton magnetic resonance spectroscopy and diffusion tensor imaging.
    Lin K; Cidan W; Qi Y; Wang X
    Med Phys; 2022 Jul; 49(7):4419-4429. PubMed ID: 35366379
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Glioma assessment using quantitative blood volume maps generated by T1-weighted dynamic contrast-enhanced magnetic resonance imaging: a receiver operating characteristic study.
    Lüdemann L; Grieger W; Wurm R; Wust P; Zimmer C
    Acta Radiol; 2006 Apr; 47(3):303-10. PubMed ID: 16613313
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Diffusion tensor imaging radiomics in lower-grade glioma: improving subtyping of isocitrate dehydrogenase mutation status.
    Park CJ; Choi YS; Park YW; Ahn SS; Kang SG; Chang JH; Kim SH; Lee SK
    Neuroradiology; 2020 Mar; 62(3):319-326. PubMed ID: 31820065
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gliomas: application of cumulative histogram analysis of normalized cerebral blood volume on 3 T MRI to tumor grading.
    Kim H; Choi SH; Kim JH; Ryoo I; Kim SC; Yeom JA; Shin H; Jung SC; Lee AL; Yun TJ; Park CK; Sohn CH; Park SH
    PLoS One; 2013; 8(5):e63462. PubMed ID: 23704910
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deriving quantitative information from multiparametric MRI via Radiomics: Evaluation of the robustness and predictive value of radiomic features in the discrimination of low-grade versus high-grade gliomas with machine learning.
    Ubaldi L; Saponaro S; Giuliano A; Talamonti C; Retico A
    Phys Med; 2023 Mar; 107():102538. PubMed ID: 36796177
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Radiomic features predict Ki-67 expression level and survival in lower grade gliomas.
    Li Y; Qian Z; Xu K; Wang K; Fan X; Li S; Liu X; Wang Y; Jiang T
    J Neurooncol; 2017 Nov; 135(2):317-324. PubMed ID: 28900812
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Radiogenomic analysis of vascular endothelial growth factor in patients with diffuse gliomas.
    Sun Z; Li Y; Wang Y; Fan X; Xu K; Wang K; Li S; Zhang Z; Jiang T; Liu X
    Cancer Imaging; 2019 Oct; 19(1):68. PubMed ID: 31639060
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development and validation of a machine learning algorithm for predicting diffuse midline glioma, H3 K27-altered, H3 K27 wild-type high-grade glioma, and primary CNS lymphoma of the brain midline in adults.
    Lv K; Chen H; Cao X; Du P; Chen J; Liu X; Zhu L; Geng D; Zhang J
    J Neurosurg; 2023 Aug; 139(2):393-401. PubMed ID: 36681946
    [TBL] [Abstract][Full Text] [Related]  

  • 58. World Health Organization Grade II/III Glioma Molecular Status: Prediction by MRI Morphologic Features and Apparent Diffusion Coefficient.
    Maynard J; Okuchi S; Wastling S; Busaidi AA; Almossawi O; Mbatha W; Brandner S; Jaunmuktane Z; Koc AM; Mancini L; Jäger R; Thust S
    Radiology; 2020 Jul; 296(1):111-121. PubMed ID: 32315266
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Association Between Histopathology and Magnetic Resonance Imaging Texture in Grading Gliomas Based on Intraoperative Magnetic Resonance Navigated Stereotactic Biopsy.
    Rui W; Pang H; Xie Q; Wang Y; Duan S; Ren Y; Yao Z
    J Comput Assist Tomogr; 2021 Sep-Oct 01; 45(5):728-735. PubMed ID: 34347700
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Contrast-enhanced T1-weighted image radiomics of brain metastases may predict EGFR mutation status in primary lung cancer.
    Ahn SJ; Kwon H; Yang JJ; Park M; Cha YJ; Suh SH; Lee JM
    Sci Rep; 2020 Jun; 10(1):8905. PubMed ID: 32483122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.