BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31857642)

  • 1. The Imaging Resolution and Knudsen Effect on the Mass Transport of Shale Gas Assisted by Multi-length Scale X-Ray Computed Tomography.
    Iacoviello F; Lu X; Mitchell TM; Brett DJL; Shearing PR
    Sci Rep; 2019 Dec; 9(1):19465. PubMed ID: 31857642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale simulation of shale transport properties using the lattice Boltzmann method: permeability and diffusivity.
    Chen L; Zhang L; Kang Q; Viswanathan HS; Yao J; Tao W
    Sci Rep; 2015 Jan; 5():8089. PubMed ID: 25627247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix.
    Zhang P; Hu L; Meegoda JN
    Materials (Basel); 2017 Jan; 10(2):. PubMed ID: 28772465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix.
    Zhang P; Hu L; Meegoda JN; Gao S
    Sci Rep; 2015 Aug; 5():13501. PubMed ID: 26310236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the anisotropy and tortuosity of permeable pathways in clay-rich mudstones using models based on X-ray tomography.
    Backeberg NR; Iacoviello F; Rittner M; Mitchell TM; Jones AP; Day R; Wheeler J; Shearing PR; Vermeesch P; Striolo A
    Sci Rep; 2017 Nov; 7(1):14838. PubMed ID: 29093572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiparameter Analysis of Gas Transport Phenomena in Shale Gas Reservoirs: Apparent Permeability Characterization.
    Shen Y; Pang Y; Shen Z; Tian Y; Ge H
    Sci Rep; 2018 Feb; 8(1):2601. PubMed ID: 29422663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Confinement Effect on Porosity and Permeability of Shales.
    Goral J; Panja P; Deo M; Andrew M; Linden S; Schwarz JO; Wiegmann A
    Sci Rep; 2020 Jan; 10(1):49. PubMed ID: 31913330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructural Characterization of Fried Potato Disks Using X-Ray Micro Computed Tomography.
    Alam T; Takhar PS
    J Food Sci; 2016 Mar; 81(3):E651-64. PubMed ID: 26868763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of gas production rate from shale gas reservoirs using a micro-macro analysis.
    Lin D; Zhang D; Zhang X; Goncalves da Silva BM; Hu L; Meegoda JN
    Sci Rep; 2023 Jan; 13(1):494. PubMed ID: 36627431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lattice Boltzmann simulation of shale gas transport in organic nano-pores.
    Zhang X; Xiao L; Shan X; Guo L
    Sci Rep; 2014 May; 4():4843. PubMed ID: 24784022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights from shale gas production at the microscopic scale.
    Kovalchuk N; Hadjistassou C
    Eur Phys J E Soft Matter; 2018 Nov; 41(11):134. PubMed ID: 30446939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data.
    Karlsons K; DE Kort DW; Sederman AJ; Mantle MD; DE Jong H; Appel M; Gladden LF
    J Microsc; 2019 Nov; 276(2):63-81. PubMed ID: 31587277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale modeling of gas flow behaviors in nanoporous shale matrix considering multiple transport mechanisms.
    Zhou W; Yang X; Liu X
    Phys Rev E; 2022 May; 105(5-2):055308. PubMed ID: 35706209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Microstructure and Transport Properties of Deteriorated Cementitious Materials from Their X-ray Computed Tomography (CT) Images.
    Promentilla MAB; Cortez SM; Papel RAD; Tablada BM; Sugiyama T
    Materials (Basel); 2016 May; 9(5):. PubMed ID: 28773511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An anisotropic pore-network model to estimate the shale gas permeability.
    Zhang D; Zhang X; Guo H; Lin D; Meegoda JN; Hu L
    Sci Rep; 2021 Apr; 11(1):7902. PubMed ID: 33846392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractal characteristics of shale pore structure and its influence on seepage flow.
    Wang S; Li X; Xue H; Shen Z; Chen L
    R Soc Open Sci; 2021 May; 8(5):202271. PubMed ID: 34017601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of Gas Flow Characteristics in Tight Porous Media with a Microscale Lattice Boltzmann Model.
    Zhao J; Yao J; Zhang M; Zhang L; Yang Y; Sun H; An S; Li A
    Sci Rep; 2016 Sep; 6():32393. PubMed ID: 27587293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional diffusion of non-sorbing species in porous sandstone: computer simulation based on X-ray microtomography using synchrotron radiation.
    Nakashima Y; Nakano T; Nakamura K; Uesugi K; Tsuchiyama A; Ikeda S
    J Contam Hydrol; 2004 Oct; 74(1-4):253-64. PubMed ID: 15358495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of Knudsen diffusion coefficients from tracer experiments conducted with a binary gas system and a porous medium.
    Hibi Y; Kashihara A
    J Contam Hydrol; 2018 Mar; 210():65-80. PubMed ID: 29519732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mineral precipitation-induced porosity reduction and its effect on transport parameters in diffusion-controlled porous media.
    Chagneau A; Claret F; Enzmann F; Kersten M; Heck S; Madé B; Schäfer T
    Geochem Trans; 2015; 16():13. PubMed ID: 26339199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.