BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31858046)

  • 1. Facile Synthesis of Calcium Hydroxide Nanoparticles onto TEMPO-Oxidized Cellulose Nanofibers for Heritage Conservation.
    El Bakkari M; Bindiganavile V; Boluk Y
    ACS Omega; 2019 Dec; 4(24):20606-20611. PubMed ID: 31858046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignin Nanoparticle Nucleation and Growth on Cellulose and Chitin Nanofibers.
    Pasquier E; Mattos BD; Belgacem N; Bras J; Rojas OJ
    Biomacromolecules; 2021 Feb; 22(2):880-889. PubMed ID: 33377786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alcohol dispersions of calcium hydroxide nanoparticles for stone conservation.
    Rodriguez-Navarro C; Suzuki A; Ruiz-Agudo E
    Langmuir; 2013 Sep; 29(36):11457-70. PubMed ID: 23919634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NTP Toxicity Study Report on the atmospheric characterization, particle size, chemical composition, and workplace exposure assessment of cellulose insulation (CELLULOSEINS).
    Morgan DL
    Toxic Rep Ser; 2006 Aug; (74):1-62, A1-C2. PubMed ID: 17160106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-low Concentration of Cellulose Nanofibers (CNFs) for Enhanced Nucleation and Yield of ZnO Nanoparticles.
    Hoogendoorn BW; Birdsong BK; Capezza AJ; Ström V; Li Y; Xiao X; Olsson RT
    Langmuir; 2022 Oct; 38(41):12480-12490. PubMed ID: 36200128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers.
    Ifuku S; Tsuji M; Morimoto M; Saimoto H; Yano H
    Biomacromolecules; 2009 Sep; 10(9):2714-7. PubMed ID: 19653675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The carbonation kinetics of calcium hydroxide nanoparticles: A Boundary Nucleation and Growth description.
    Camerini R; Poggi G; Chelazzi D; Ridi F; Giorgi R; Baglioni P
    J Colloid Interface Sci; 2019 Jul; 547():370-381. PubMed ID: 30974252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose Nanofibers Prepared Using the TEMPO/Laccase/O
    Jiang J; Ye W; Liu L; Wang Z; Fan Y; Saito T; Isogai A
    Biomacromolecules; 2017 Jan; 18(1):288-294. PubMed ID: 27995786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The kinetic of calcium silicate hydrate formation from silica and calcium hydroxide nanoparticles.
    Camerini R; Poggi G; Ridi F; Baglioni P
    J Colloid Interface Sci; 2022 Jan; 605():33-43. PubMed ID: 34311313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TEMPO-oxidized bacterial cellulose nanofibers-supported gold nanoparticles with superior catalytic properties.
    Chen Y; Chen S; Wang B; Yao J; Wang H
    Carbohydr Polym; 2017 Mar; 160():34-42. PubMed ID: 28115098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of oxyanions from synthetic wastewater via carbonation process of calcium hydroxide: applied and fundamental aspects.
    Montes-Hernandez G; Concha-Lozano N; Renard F; Quirico E
    J Hazard Mater; 2009 Jul; 166(2-3):788-95. PubMed ID: 19135792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three dimensional polycaprolactone/cellulose scaffold containing calcium-based particles: a new platform for bone regeneration.
    Kim SE; Tiwari AP
    Carbohydr Polym; 2020 Dec; 250():116880. PubMed ID: 33049823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of calcium carbonate-polyethylene oxide hybrid nanofibers through in-situ electrospinning.
    Faridi-Majidi R; Sharifi-Sanjani N; Madani M
    J Nanosci Nanotechnol; 2008 May; 8(5):2627-31. PubMed ID: 18572696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics and Mechanism of Calcium Hydroxide Conversion into Calcium Alkoxides: Implications in Heritage Conservation Using Nanolimes.
    Rodriguez-Navarro C; Vettori I; Ruiz-Agudo E
    Langmuir; 2016 May; 32(20):5183-94. PubMed ID: 27149182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TEMPO-oxidized cellulose nanofibers.
    Isogai A; Saito T; Fukuzumi H
    Nanoscale; 2011 Jan; 3(1):71-85. PubMed ID: 20957280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of hemicellulose content and cellulose crystal change on cellulose nanofibers properties.
    Dias MC; Zidanes UL; Martins CCN; de Oliveira ALM; Damásio RAP; de Resende JV; Vilas Boas EVB; Belgacem MN; Tonoli GHD; Ferreira SR
    Int J Biol Macromol; 2022 Jul; 213():780-790. PubMed ID: 35690158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional cellulose-based nanofibers with catalytic activity: effect of Ag content and Ag phase.
    Jang KH; Kang YO; Park WH
    Int J Biol Macromol; 2014 Jun; 67():394-400. PubMed ID: 24705168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple ions control the elasticity of calcite gels via interparticle forces.
    Liberto T; Barentin C; Colombani J; Costa A; Gardini D; Bellotto M; Le Merrer M
    J Colloid Interface Sci; 2019 Oct; 553():280-288. PubMed ID: 31220706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TOCN/copper calcium titanate composite aerogel films as high-performance triboelectric materials for energy harvesting.
    Song Y; Liu M; Bao J; Hu Y; Xu M; Yang Z; Yang Q; Cai H; Xiong C; Shi Z
    Carbohydr Polym; 2022 Dec; 298():120111. PubMed ID: 36241285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Injectable TEMPO-oxidized nanofibrillated cellulose/biphasic calcium phosphate hydrogel for bone regeneration.
    Safwat E; Hassan ML; Saniour S; Zaki DY; Eldeftar M; Saba D; Zazou M
    J Biomater Appl; 2018 May; 32(10):1371-1381. PubMed ID: 29554839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.