These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31858063)

  • 1. Crystallite Structure Characteristics and Its Influence on Methane Adsorption for Different Rank Coals.
    Meng J; Li S; Niu J
    ACS Omega; 2019 Dec; 4(24):20762-20772. PubMed ID: 31858063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water adsorption characteristic and its impact on pore structure and methane adsorption of various rank coals.
    Chen MY; Chen XY; Wang L; Tian FC; Yang YM; Zhang XJ; Yang YP
    Environ Sci Pollut Res Int; 2022 Apr; 29(20):29870-29886. PubMed ID: 34993772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of Molecular Structures and Methane Adsorption Behaviors in Coals Subjected to Cyclical Microwave Exposure.
    Zhang L; Kang T; Kang J; Zhang X; Zhang B; Guo J; Chai Z
    ACS Omega; 2021 Nov; 6(47):31566-31577. PubMed ID: 34869982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanopore Structure of Different Rank Coals and Its Quantitative Characterization.
    Li X; Li Z; Zhang F; Zhang Q; Nie B; Meng Y
    J Nanosci Nanotechnol; 2021 Jan; 21(1):22-42. PubMed ID: 33213611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Water Invasion on Outburst Predictive Index of Low Rank Coals in Dalong Mine.
    Jiang J; Cheng Y; Mou J; Jin K; Cui J
    PLoS One; 2015; 10(7):e0132355. PubMed ID: 26161959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between the Geological Origins of Pore-Fracture and Methane Adsorption Behaviors in High-Rank Coal.
    Han S; Zhou X; Zhang J; Xiang W; Xu A
    ACS Omega; 2022 Mar; 7(9):8091-8102. PubMed ID: 35284768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlating Coal Petrology and Methane Adsorption Parameters of High-Volatile Bituminous Coals with P-Wave Velocity.
    Hou H; Huang X; Shao L; Liang G
    ACS Omega; 2022 Dec; 7(50):46972-46982. PubMed ID: 36570180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical pore size for micropore filling in coal samples with different rank coals.
    Hong L; Wang W; Gao D; Liu W
    PLoS One; 2022; 17(3):e0264225. PubMed ID: 35275921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of Buertai Coal Macromolecular Model and GCMC Simulation of Methane Adsorption in Micropores.
    Yang Z; Yin Z; Xue W; Meng Z; Li Y; Long J; Wang J
    ACS Omega; 2021 May; 6(17):11173-11182. PubMed ID: 34056272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale Pore Structure Characteristics of Deep Coalbed Methane Reservoirs and Its Influence on CH₄ Adsorption in the Linxing Area, Eastern Ordos Basin, China.
    Gao XD; Wang YB; Wu X; Li Y; Ni XM; Zhao SH
    J Nanosci Nanotechnol; 2021 Jan; 21(1):43-56. PubMed ID: 33213612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Moisture on Methane Adsorption Characteristics of Long-Flame Coal.
    Chen X; Wang X; Zhao S; Kang N; Feng S
    ACS Omega; 2022 May; 7(19):16670-16677. PubMed ID: 35601315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Supercritical Conditions on Isothermal Adsorption Capacity Calculation of Methane and Model Optimization.
    Li Z; Gao B; Lei W; Ma S; Liu H
    ACS Omega; 2024 Oct; 9(40):41923-41935. PubMed ID: 39398159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Pore Parameters and Functional Groups in Coal on CO
    Dong K; Zhai Z; Guo A
    ACS Omega; 2021 Dec; 6(48):32395-32407. PubMed ID: 34901591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore Structure Characteristics and Adsorption and Desorption Capacity of Coal Rock after Exposure to Clean Fracturing Fluid.
    Zuo W; Zhang W; Liu Y; Han H; Huang C; Jiang W; Mitri H
    ACS Omega; 2022 Jun; 7(25):21407-21417. PubMed ID: 35785274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore Structure and Adsorption Characteristics of Maceral Groups: Insights from Centrifugal Flotation Experiment of Coals.
    Jia T; Zhang S; Tang S; Xin D; Zhang Q; Zhang K
    ACS Omega; 2023 Apr; 8(13):12079-12097. PubMed ID: 37033861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study for the Effect of Temperature on Methane Desorption Based on Thermodynamics and Kinetics.
    Gao Z; Ma D; Chen Y; Zheng C; Teng J
    ACS Omega; 2021 Jan; 6(1):702-714. PubMed ID: 33458523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Adsorption Models for Entirely Describing the Adsorption Isotherm and Heat of Methane in Heterogeneous Nanopore Structures of Coal.
    Li HJ; Kang JH; Pan ZJ; Zhou FB; Deng JC; Zhu SJ
    J Nanosci Nanotechnol; 2021 Jan; 21(1):212-224. PubMed ID: 33213624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation on the Structure and Fractal Characteristics of Nanopores in High-Rank Coal: Implications for the Methane Adsorption Capacity.
    Yang Y; Yu K; Ju Y; Hu Q; Yu B; Qiao P; Chen L; Zhang P; Liu F; Song Y; Ju L; Li W
    J Nanosci Nanotechnol; 2021 Jan; 21(1):392-404. PubMed ID: 33213639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale Lattice Boltzmann Simulation of the Kinetics Process of Methane Desorption-Diffusion in Coal.
    Peng Z; Deng Z; Feng H; Liu S; Li Y
    ACS Omega; 2021 Aug; 6(30):19789-19798. PubMed ID: 34368566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of pore characteristics and methane adsorption characteristics of Nanshan 1/3 coking coal under different stresses.
    Fang S; Zhu H; Gao M; He X; Liao Q; Hu L
    Sci Rep; 2022 Feb; 12(1):3117. PubMed ID: 35210500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.