These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31858253)

  • 1. Exploring free energy profile of petroleum thermal cracking mechanisms.
    Wang F; Tao P
    J Mol Model; 2019 Dec; 26(1):15. PubMed ID: 31858253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrolysis of Asphaltenes Derived from Residual Oils and Their Thermally Treated Pitch.
    AlHumaidan FS; Rana MS; Lababidi HMS; Hauser A
    ACS Omega; 2020 Sep; 5(38):24412-24421. PubMed ID: 33015457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing low-temperature thermal remediation of petroleum sludge by solvent deasphalting.
    Li Q; Sun D; Hua J; Jiang K; Xu Z; Tong K
    Chemosphere; 2022 Oct; 304():135278. PubMed ID: 35697105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale reactive molecular dynamics simulation and kinetic modeling of high-temperature pyrolysis of the Gloeocapsomorphaprisca microfossils.
    Zou C; Raman S; van Duin AC
    J Phys Chem B; 2014 Jun; 118(23):6302-15. PubMed ID: 24821589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of fuel additives on the thermal cracking of n-decane from reactive molecular dynamics.
    Wang QD; Hua XX; Cheng XM; Li JQ; Li XY
    J Phys Chem A; 2012 Apr; 116(15):3794-801. PubMed ID: 22435791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational study of the mechanism of the photochemical and thermal ring-opening/closure reactions and solvent dependence in spirooxazines.
    Castro PJ; Gómez I; Cossi M; Reguero M
    J Phys Chem A; 2012 Aug; 116(31):8148-58. PubMed ID: 22708964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model to calculate the average interaction energy and adhesion force between petroleum asphaltenes and some metallic surfaces.
    Ortega-Rodriguez A; Alvarez-Ramirez F; Cruz SA; Lira-Galeana C
    J Colloid Interface Sci; 2006 Sep; 301(2):352-9. PubMed ID: 16843479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ultrasound thermal cracking for the tar-sand bitumen.
    Fan Q; Bai G; Liu Q; Sun Y; Yuan W; Wu S; Song XM; Zhao DZ
    Ultrason Sonochem; 2019 Jan; 50():354-362. PubMed ID: 30293739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A DFT study on the thermal cracking of JP-10.
    Yue L; Xie HJ; Qin XM; Lu XX; Fang WJ
    J Mol Model; 2013 Dec; 19(12):5355-65. PubMed ID: 24162067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on Hydrothermal Cracking of Heavy Oil under the Coexisting Conditions of Supercritical Water and Non-condensate Gas.
    Pang Z; Wang Q; Tian C; Chen J
    ACS Omega; 2023 May; 8(20):18029-18040. PubMed ID: 37251137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput investigation of catalysts for JP-8 fuel cracking to liquefied petroleum gas.
    Bedenbaugh JE; Kim S; Sasmaz E; Lauterbach J
    ACS Comb Sci; 2013 Sep; 15(9):491-7. PubMed ID: 23879196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal decomposition pathways of hydroxylamine: theoretical investigation on the initial steps.
    Wang Q; Wei C; Pérez LM; Rogers WJ; Hall MB; Mannan MS
    J Phys Chem A; 2010 Sep; 114(34):9262-9. PubMed ID: 20677777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of resins and asphaltenes facilitates asphaltene dissolution by an organic acid.
    Hashmi SM; Firoozabadi A
    J Colloid Interface Sci; 2013 Mar; 394():115-23. PubMed ID: 23351475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A two-layer ONIOM study of thiophene cracking catalyzed by proton- and cation-exchanged FAU zeolite.
    Sun Y; Mao X; Pei S
    J Mol Model; 2016 Feb; 22(2):51. PubMed ID: 26841976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Visualization of the Phase Behavior of Oil Samples Under Refinery Process Conditions.
    Laborde-Boutet C; McCaffrey WC
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel ultrasonic-assisted method for enhanced yield of light oil in the thermal cracking of residual oil.
    Song G; Wang DH; Zhang Z; Liu M; Xu Q; Zhao DZ
    Ultrason Sonochem; 2018 Nov; 48():103-109. PubMed ID: 30080531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proximate analyses and predicting HHV of chars obtained from cocracking of petroleum vacuum residue with coal, plastics and biomass.
    Ahmaruzzaman M
    Bioresour Technol; 2008 Jul; 99(11):5043-50. PubMed ID: 17964142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study of chain transfer to solvent reactions of alkyl acrylates.
    Moghadam N; Srinivasan S; Grady MC; Rappe AM; Soroush M
    J Phys Chem A; 2014 Jul; 118(29):5474-87. PubMed ID: 24971646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical study of chlorophyll a hydrates formation in aqueous organic solvents.
    Ben Fredj A; Ruiz-López MF
    J Phys Chem B; 2010 Jan; 114(1):681-7. PubMed ID: 20020703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.