These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31858413)

  • 1. Experimental study on the effects of chemical composite additive on the microscopic characteristics of spontaneous combustion coal.
    Pan R; Ma J; Zheng L; Wang J
    Environ Sci Pollut Res Int; 2020 Feb; 27(5):5606-5619. PubMed ID: 31858413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CO2 emission of coal spontaneous combustion and its relation with coal microstructure, China.
    Wang H; Chen Chen ; Huang T; Gao W
    J Environ Biol; 2015 Jul; 36(4):1017-24. PubMed ID: 26364484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study the effect of drying on the oxidation thermogravimetric and functional group composition characteristics of immersed lignite.
    Guo W; Zhang C; Han Y
    Sci Rep; 2022 Dec; 12(1):21643. PubMed ID: 36517482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the inhibitory mechanism of dehydrogenated antioxidants on coal spontaneous combustion.
    Zhang X; Yu C; Lu B; Gao F; Shan C; Zou J
    Sci Rep; 2022 Dec; 12(1):21237. PubMed ID: 36482182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the reignition characteristics on long-flame coal by oxidization and water immersion.
    Xu Y; Bu Y; Liu Z; Lv Z; Chen M; Wang L
    Environ Sci Pollut Res Int; 2021 Oct; 28(40):57348-57360. PubMed ID: 34089454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation Characteristics of Functional Groups in Relation to Coal Spontaneous Combustion.
    Zhang Y; Zhang J; Li Y; Gao S; Yang C; Shi X
    ACS Omega; 2021 Mar; 6(11):7669-7679. PubMed ID: 33778277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on chemical resistance characteristics of water-immersed coal with different metamorphic degrees.
    Zhang X; Zhao M; Yang J; Lu B; Wang G; Dai F
    Sci Rep; 2022 Aug; 12(1):13781. PubMed ID: 35962023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combustion Kinetics and Mechanism of Pre-Oxidized Coal with Different Oxygen Concentrations.
    Fan H; Wang K; Zhai X; Hu L
    ACS Omega; 2021 Jul; 6(29):19170-19182. PubMed ID: 34337255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermokinetic behaviour and functional group variation during spontaneous combustion of raw coal and its preoxidised form.
    Li DJ; Xiao Y; Lü HF; Laiwang B; Shu CM
    RSC Adv; 2020 Jun; 10(41):24472-24482. PubMed ID: 35516190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the air leakage characteristics of a goaf in a shallow coal seam and spontaneous combustion prevention and control strategies for residual coal.
    Li J; Li X; Liu C; Zhang N
    PLoS One; 2022; 17(6):e0269822. PubMed ID: 35749517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the Mechanism of Antioxidants Affecting the Spontaneous Combustion Oxidation of Coal.
    Zhang X; Yu C; Gao F; Lu B; Zou J
    ACS Omega; 2023 Jan; 8(3):3396-3403. PubMed ID: 36713716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physico-chemical characteristics of pulverized coals and their interrelations-a spontaneous combustion and explosion perspective.
    Mishra DP
    Environ Sci Pollut Res Int; 2022 Apr; 29(17):24849-24862. PubMed ID: 34825337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental investigation of temperature distribution and spontaneous combustion tendency of coal gangue stockpiles in storage.
    Li A; Chen C; Chen J; Lei P; Zhang Y
    Environ Sci Pollut Res Int; 2021 Jul; 28(26):34489-34500. PubMed ID: 33650058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Organic Sulfur on Low-Temperature Oxidation of Coal and its Transition Characteristics.
    Gao F; Jia Z; Shan YF; Teng Y; Li YD; Pu XG
    ACS Omega; 2022 Nov; 7(44):39830-39839. PubMed ID: 36385873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the evolution of the pore structure of low rank coal during spontaneous combustion.
    Wang H; Li J; Zhang Y; Wu Y; Wang Z
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):39932-39945. PubMed ID: 36602744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the Spontaneous Combustion Tendency of Coal Based on Grey Relational and Multiple Regression Analysis.
    Gao D; Guo L; Wang F; Zhang Z
    ACS Omega; 2021 Mar; 6(10):6736-6746. PubMed ID: 33748587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study on the prediction method of coal spontaneous combustion development period based on critical temperature.
    Qu L
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):35748-35760. PubMed ID: 30357672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Study on Catalytic Action of Intrinsic Metals in Coal Spontaneous Combustion.
    Qiao L; Mu X; Deng C; Wang X; Wang Y
    ACS Omega; 2023 Apr; 8(15):13680-13689. PubMed ID: 37091410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Water Evaporation on the Inhibition of Spontaneous Coal Combustion.
    Han Q; Cui C; Jiang S; Deng C; Jin Z
    ACS Omega; 2022 Mar; 7(8):6824-6833. PubMed ID: 35252676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Moisture and Associated Pyrite on the Microstructure of Anthracite Coal for Spontaneous Combustion.
    Wang CP; Yang NN; Xiao Y; Bai ZJ; Deng J; Shu CM
    ACS Omega; 2020 Oct; 5(42):27607-27617. PubMed ID: 33134724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.