These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Process intensification of EB66® cell cultivations leads to high-yield yellow fever and Zika virus production. Nikolay A; Léon A; Schwamborn K; Genzel Y; Reichl U Appl Microbiol Biotechnol; 2018 Oct; 102(20):8725-8737. PubMed ID: 30091043 [TBL] [Abstract][Full Text] [Related]
4. Influenza A virus production in a single-use orbital shaken bioreactor with ATF or TFF perfusion systems. Coronel J; Behrendt I; Bürgin T; Anderlei T; Sandig V; Reichl U; Genzel Y Vaccine; 2019 Nov; 37(47):7011-7018. PubMed ID: 31266669 [TBL] [Abstract][Full Text] [Related]
5. High cell density cultivations by alternating tangential flow (ATF) perfusion for influenza A virus production using suspension cells. Genzel Y; Vogel T; Buck J; Behrendt I; Ramirez DV; Schiedner G; Jordan I; Reichl U Vaccine; 2014 May; 32(24):2770-81. PubMed ID: 24583003 [TBL] [Abstract][Full Text] [Related]
6. Efficient influenza A virus production in high cell density using the novel porcine suspension cell line PBG.PK2.1. Gränicher G; Coronel J; Pralow A; Marichal-Gallardo P; Wolff M; Rapp E; Karlas A; Sandig V; Genzel Y; Reichl U Vaccine; 2019 Nov; 37(47):7019-7028. PubMed ID: 31005427 [TBL] [Abstract][Full Text] [Related]
7. High-cell-density cultivations to increase MVA virus production. Vázquez-Ramírez D; Genzel Y; Jordan I; Sandig V; Reichl U Vaccine; 2018 May; 36(22):3124-3133. PubMed ID: 29433897 [TBL] [Abstract][Full Text] [Related]
8. High titer MVA and influenza A virus production using a hybrid fed-batch/perfusion strategy with an ATF system. Vázquez-Ramírez D; Jordan I; Sandig V; Genzel Y; Reichl U Appl Microbiol Biotechnol; 2019 Apr; 103(7):3025-3035. PubMed ID: 30796494 [TBL] [Abstract][Full Text] [Related]
9. Continuous influenza virus production in a tubular bioreactor system provides stable titers and avoids the "von Magnus effect". Tapia F; Wohlfarth D; Sandig V; Jordan I; Genzel Y; Reichl U PLoS One; 2019; 14(11):e0224317. PubMed ID: 31689309 [TBL] [Abstract][Full Text] [Related]
10. Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production. Tapia F; Vázquez-Ramírez D; Genzel Y; Reichl U Appl Microbiol Biotechnol; 2016 Mar; 100(5):2121-32. PubMed ID: 26758296 [TBL] [Abstract][Full Text] [Related]
11. Propagation of Brazilian Zika virus strains in static and suspension cultures using Vero and BHK cells. Nikolay A; Castilho LR; Reichl U; Genzel Y Vaccine; 2018 May; 36(22):3140-3145. PubMed ID: 28343780 [TBL] [Abstract][Full Text] [Related]
12. Semi-perfusion cultures of suspension MDCK cells enable high cell concentrations and efficient influenza A virus production. Bissinger T; Fritsch J; Mihut A; Wu Y; Liu X; Genzel Y; Tan WS; Reichl U Vaccine; 2019 Nov; 37(47):7003-7010. PubMed ID: 31047676 [TBL] [Abstract][Full Text] [Related]
13. A high cell density perfusion process for Modified Vaccinia virus Ankara production: Process integration with inline DNA digestion and cost analysis. Gränicher G; Babakhani M; Göbel S; Jordan I; Marichal-Gallardo P; Genzel Y; Reichl U Biotechnol Bioeng; 2021 Dec; 118(12):4720-4734. PubMed ID: 34506646 [TBL] [Abstract][Full Text] [Related]
14. High cell density perfusion process for high yield of influenza A virus production using MDCK suspension cells. Wu Y; Bissinger T; Genzel Y; Liu X; Reichl U; Tan WS Appl Microbiol Biotechnol; 2021 Feb; 105(4):1421-1434. PubMed ID: 33515287 [TBL] [Abstract][Full Text] [Related]
15. Performance of an acoustic settler versus a hollow fiber-based ATF technology for influenza virus production in perfusion. Gränicher G; Coronel J; Trampler F; Jordan I; Genzel Y; Reichl U Appl Microbiol Biotechnol; 2020 Jun; 104(11):4877-4888. PubMed ID: 32291490 [TBL] [Abstract][Full Text] [Related]
16. Influenza viruses production: Evaluation of a novel avian cell line DuckCelt®-T17. Petiot E; Proust A; Traversier A; Durous L; Dappozze F; Gras M; Guillard C; Balloul JM; Rosa-Calatrava M Vaccine; 2018 May; 36(22):3101-3111. PubMed ID: 28571695 [TBL] [Abstract][Full Text] [Related]
17. Production of Modified Vaccinia Ankara Virus by Intensified Cell Cultures: A Comparison of Platform Technologies for Viral Vector Production. Gränicher G; Tapia F; Behrendt I; Jordan I; Genzel Y; Reichl U Biotechnol J; 2021 Jan; 16(1):e2000024. PubMed ID: 32762152 [TBL] [Abstract][Full Text] [Related]
18. Development of suspension adapted Vero cell culture process technology for production of viral vaccines. Shen CF; Guilbault C; Li X; Elahi SM; Ansorge S; Kamen A; Gilbert R Vaccine; 2019 Nov; 37(47):6996-7002. PubMed ID: 31288997 [TBL] [Abstract][Full Text] [Related]
19. Designing cell lines for viral vaccine production: Where do we stand? Genzel Y Biotechnol J; 2015 May; 10(5):728-40. PubMed ID: 25903999 [TBL] [Abstract][Full Text] [Related]
20. MDCK and Vero cells for influenza virus vaccine production: a one-to-one comparison up to lab-scale bioreactor cultivation. Genzel Y; Dietzsch C; Rapp E; Schwarzer J; Reichl U Appl Microbiol Biotechnol; 2010 Sep; 88(2):461-75. PubMed ID: 20617311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]