These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 31858709)
1. How enzyme promiscuity and horizontal gene transfer contribute to metabolic innovation. Glasner ME; Truong DP; Morse BC FEBS J; 2020 Apr; 287(7):1323-1342. PubMed ID: 31858709 [TBL] [Abstract][Full Text] [Related]
2. Insights into the evolution of enzyme substrate promiscuity after the discovery of (βα)₈ isomerase evolutionary intermediates from a diverse metagenome. Noda-García L; Juárez-Vázquez AL; Ávila-Arcos MC; Verduzco-Castro EA; Montero-Morán G; Gaytán P; Carrillo-Tripp M; Barona-Gómez F BMC Evol Biol; 2015 Jun; 15():107. PubMed ID: 26058375 [TBL] [Abstract][Full Text] [Related]
3. Evolution of substrate specificity in a recipient's enzyme following horizontal gene transfer. Noda-García L; Camacho-Zarco AR; Medina-Ruíz S; Gaytán P; Carrillo-Tripp M; Fülöp V; Barona-Gómez F Mol Biol Evol; 2013 Sep; 30(9):2024-34. PubMed ID: 23800623 [TBL] [Abstract][Full Text] [Related]
4. Catalytic Promiscuity of Ancestral Esterases and Hydroxynitrile Lyases. Devamani T; Rauwerdink AM; Lunzer M; Jones BJ; Mooney JL; Tan MA; Zhang ZJ; Xu JH; Dean AM; Kazlauskas RJ J Am Chem Soc; 2016 Jan; 138(3):1046-56. PubMed ID: 26736133 [TBL] [Abstract][Full Text] [Related]
5. Promiscuity of Exiguobacterium sp. AT1b o-succinylbenzoate synthase illustrates evolutionary transitions in the OSBS family. Brizendine AM; Odokonyero D; McMillan AW; Zhu M; Hull K; Romo D; Glasner ME Biochem Biophys Res Commun; 2014 Jul; 450(1):679-84. PubMed ID: 24937446 [TBL] [Abstract][Full Text] [Related]
6. Evolution of new enzymes by gene duplication and divergence. Copley SD FEBS J; 2020 Apr; 287(7):1262-1283. PubMed ID: 32250558 [TBL] [Abstract][Full Text] [Related]
7. Unusual commonality in active site structural features of substrate promiscuous and specialist enzymes. Thakur D; Pandit SB J Struct Biol; 2022 Mar; 214(1):107835. PubMed ID: 35104611 [TBL] [Abstract][Full Text] [Related]
8. Evolution of a Catalytic Mechanism. Rauwerdink A; Lunzer M; Devamani T; Jones B; Mooney J; Zhang ZJ; Xu JH; Kazlauskas RJ; Dean AM Mol Biol Evol; 2016 Apr; 33(4):971-9. PubMed ID: 26681154 [TBL] [Abstract][Full Text] [Related]
10. Enzyme promiscuity shapes adaptation to novel growth substrates. Guzmán GI; Sandberg TE; LaCroix RA; Nyerges Á; Papp H; de Raad M; King ZA; Hefner Y; Northen TR; Notebaart RA; Pál C; Palsson BO; Papp B; Feist AM Mol Syst Biol; 2019 Apr; 15(4):e8462. PubMed ID: 30962359 [TBL] [Abstract][Full Text] [Related]
11. Gradual neofunctionalization in the convergent evolution of trichomonad lactate and malate dehydrogenases. Steindel PA; Chen EH; Wirth JD; Theobald DL Protein Sci; 2016 Jul; 25(7):1319-31. PubMed ID: 26889885 [TBL] [Abstract][Full Text] [Related]
12. Catalytic and substrate promiscuity: distinct multiple chemistries catalysed by the phosphatase domain of receptor protein tyrosine phosphatase. Srinivasan B; Marks H; Mitra S; Smalley DM; Skolnick J Biochem J; 2016 Jul; 473(14):2165-77. PubMed ID: 27208174 [TBL] [Abstract][Full Text] [Related]
13. The structural basis for substrate promiscuity in 2-keto-3-deoxygluconate aldolase from the Entner-Doudoroff pathway in Sulfolobus solfataricus. Theodossis A; Walden H; Westwick EJ; Connaris H; Lamble HJ; Hough DW; Danson MJ; Taylor GL J Biol Chem; 2004 Oct; 279(42):43886-92. PubMed ID: 15265860 [TBL] [Abstract][Full Text] [Related]
14. Frustration can Limit the Adaptation of Promiscuous Enzymes Through Gene Duplication and Specialisation. Schmutzer M; Dasmeh P; Wagner A J Mol Evol; 2024 Apr; 92(2):104-120. PubMed ID: 38470504 [TBL] [Abstract][Full Text] [Related]
15. Enzyme promiscuity: a mechanistic and evolutionary perspective. Khersonsky O; Tawfik DS Annu Rev Biochem; 2010; 79():471-505. PubMed ID: 20235827 [TBL] [Abstract][Full Text] [Related]
16. Enzyme Promiscuous Activity: How to Define it and its Evolutionary Aspects. De Luca V; Mandrich L Protein Pept Lett; 2020; 27(5):400-410. PubMed ID: 31868141 [TBL] [Abstract][Full Text] [Related]
17. Horizontal Transfer of Promiscuous Activity from Nonphotosynthetic Bacteria Contributed to Evolution of Chlorophyll Degradation Pathway. Obata D; Takabayashi A; Tanaka R; Tanaka A; Ito H Mol Biol Evol; 2019 Dec; 36(12):2830-2841. PubMed ID: 31432082 [TBL] [Abstract][Full Text] [Related]
18. Yeast metabolic innovations emerged via expanded metabolic network and gene positive selection. Lu H; Li F; Yuan L; Domenzain I; Yu R; Wang H; Li G; Chen Y; Ji B; Kerkhoven EJ; Nielsen J Mol Syst Biol; 2021 Oct; 17(10):e10427. PubMed ID: 34676984 [TBL] [Abstract][Full Text] [Related]
19. Network-level architecture and the evolutionary potential of underground metabolism. Notebaart RA; Szappanos B; Kintses B; Pál F; Györkei Á; Bogos B; Lázár V; Spohn R; Csörgő B; Wagner A; Ruppin E; Pál C; Papp B Proc Natl Acad Sci U S A; 2014 Aug; 111(32):11762-7. PubMed ID: 25071190 [TBL] [Abstract][Full Text] [Related]
20. Analysis of metabolic network disruption in engineered microbial hosts due to enzyme promiscuity. Porokhin V; Amin SA; Nicks TB; Gopinarayanan VE; Nair NU; Hassoun S Metab Eng Commun; 2021 Jun; 12():e00170. PubMed ID: 33850714 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]