These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 31858803)
21. An Operationally Simple and Mild Oxidative Homocoupling of Aryl Boronic Esters To Access Conformationally Constrained Macrocycles. Darzi ER; White BM; Loventhal LK; Zakharov LN; Jasti R J Am Chem Soc; 2017 Mar; 139(8):3106-3114. PubMed ID: 28151655 [TBL] [Abstract][Full Text] [Related]
22. Macrocycle-Encircled Polynuclear Metal Clusters: Controllable Synthesis, Reactivity Studies, and Applications. Zhang S; Zhao L Acc Chem Res; 2018 Oct; 51(10):2535-2545. PubMed ID: 30199219 [TBL] [Abstract][Full Text] [Related]
23. Macrocyclization by ring-closing metathesis in the total synthesis of natural products: reaction conditions and limitations. Gradillas A; Pérez-Castells J Angew Chem Int Ed Engl; 2006 Sep; 45(37):6086-101. PubMed ID: 16921569 [TBL] [Abstract][Full Text] [Related]
24. Bambus[n]urils: a new family of macrocyclic anion receptors. Havel V; Svec J; Wimmerova M; Dusek M; Pojarova M; Sindelar V Org Lett; 2011 Aug; 13(15):4000-3. PubMed ID: 21707115 [TBL] [Abstract][Full Text] [Related]
25. Hybrid [n]arenes through thermodynamically driven macrocyclization reactions. Boinski T; Cieszkowski A; Rosa B; Szumna A J Org Chem; 2015 Apr; 80(7):3488-95. PubMed ID: 25723902 [TBL] [Abstract][Full Text] [Related]
26. Synthesis of steroid-biaryl ether hybrid macrocycles with high skeletal and side chain variability by multiple multicomponent macrocyclization including bifunctional building blocks. Wessjohann LA; Rivera DG; Coll F J Org Chem; 2006 Sep; 71(20):7521-6. PubMed ID: 16995654 [TBL] [Abstract][Full Text] [Related]
27. Solid phase combinatorial synthesis of a library of macro-heterocycles and related acyclic compounds. Ramaseshan M; Dory YL; Deslongchamps P J Comb Chem; 2000; 2(6):615-23. PubMed ID: 11126291 [TBL] [Abstract][Full Text] [Related]
29. Peptide Macrocycles Developed from Precisely Regulated Multiple Cyclization of Unprotected Peptides. Wang J; Zha M; Fei Q; Liu W; Zhao Y; Wu C Chemistry; 2017 Oct; 23(60):15150-15155. PubMed ID: 28833777 [TBL] [Abstract][Full Text] [Related]
30. Macrocyclization Zhang P; Jiang Z; Fan Z; Li G; Ma Q; Huang J; Tang J; Xu X; Yu JQ; Jin Z Chem Sci; 2023 Aug; 14(31):8279-8287. PubMed ID: 37564415 [TBL] [Abstract][Full Text] [Related]
31. Synthesis and X-ray structures of novel macrocycles and macrobicycles containing N,N-di(pyrrolylmethyl)-N-methylamine moiety: preliminary anion binding study. Kumar R; Guchhait T; Mani G Inorg Chem; 2012 Aug; 51(16):9029-38. PubMed ID: 22871223 [TBL] [Abstract][Full Text] [Related]
32. Anion-templated syntheses of pseudopeptidic macrocycles. Bru M; Alfonso I; Burguete MI; Luis SV Angew Chem Int Ed Engl; 2006 Sep; 45(37):6155-9. PubMed ID: 16906618 [No Abstract] [Full Text] [Related]
33. Template-induced macrocycle diversity through large ring-forming alkylations of tryptophan. Lawson KV; Rose TE; Harran PG Tetrahedron; 2013 Sep; 69(36):7683-7691. PubMed ID: 23976797 [TBL] [Abstract][Full Text] [Related]
34. On the prevalence of bridged macrocyclic pyrroloindolines formed in regiodivergent alkylations of tryptophan. Rose TE; Curtin BH; Lawson KV; Simon A; Houk KN; Harran PG Chem Sci; 2016 Jul; 7(7):4158-4166. PubMed ID: 30155060 [TBL] [Abstract][Full Text] [Related]
35. Peptide Macrocyclization Inspired by Non-Ribosomal Imine Natural Products. Malins LR; deGruyter JN; Robbins KJ; Scola PM; Eastgate MD; Ghadiri MR; Baran PS J Am Chem Soc; 2017 Apr; 139(14):5233-5241. PubMed ID: 28326777 [TBL] [Abstract][Full Text] [Related]
36. Acetone-Linked Peptides: A Convergent Approach for Peptide Macrocyclization and Labeling. Assem N; Ferreira DJ; Wolan DW; Dawson PE Angew Chem Int Ed Engl; 2015 Jul; 54(30):8665-8. PubMed ID: 26096515 [TBL] [Abstract][Full Text] [Related]
37. A facile route to old and new cyclophanes via self-assembly and capture. Collins MS; Carnes ME; Nell BP; Zakharov LN; Johnson DW Nat Commun; 2016 Apr; 7():11052. PubMed ID: 27040370 [TBL] [Abstract][Full Text] [Related]
38. Structural diversity in the self-assembly of pseudopeptidic macrocycles. Alfonso I; Bru M; Burguete MI; García-Verdugo E; Luis SV Chemistry; 2010 Jan; 16(4):1246-55. PubMed ID: 19998438 [TBL] [Abstract][Full Text] [Related]
39. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics. Gong B; Shao Z Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055 [TBL] [Abstract][Full Text] [Related]
40. Preparation of Musk-Smelling Macrocyclic Lactones from Biomass: Looking for the Optimal Substrate Combination. Sytniczuk A; Leszczyńska A; Kajetanowicz A; Grela K ChemSusChem; 2018 Sep; 11(18):3157-3166. PubMed ID: 30028581 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]