These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 31859144)
21. Biochemical and electrophysiologic evidence that propofol enhances GABAergic transmission in the rat brain. Peduto VA; Concas A; Santoro G; Biggio G; Gessa GL Anesthesiology; 1991 Dec; 75(6):1000-9. PubMed ID: 1660227 [TBL] [Abstract][Full Text] [Related]
22. Application of unfolding transformation in the random matrix theory to analyze in vivo neuronal spike firing during awake and anesthetized conditions. Kato R; Yamanaka M; Kobayashi M J Pharmacol Sci; 2018 Mar; 136(3):172-176. PubMed ID: 29506906 [TBL] [Abstract][Full Text] [Related]
23. Analysis of the Hindriks and van Putten model for propofol anesthesia: Limitations and extensions. Noroozbabaee L; Steyn-Ross DA; Steyn-Ross ML; Sleigh JW Neuroimage; 2021 Feb; 227():117633. PubMed ID: 33316393 [TBL] [Abstract][Full Text] [Related]
24. Effects of halothane and propofol on excitatory and inhibitory synaptic transmission in rat cortical neurons. Kitamura A; Marszalec W; Yeh JZ; Narahashi T J Pharmacol Exp Ther; 2003 Jan; 304(1):162-71. PubMed ID: 12490587 [TBL] [Abstract][Full Text] [Related]
25. Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. Alonso A; Klink R J Neurophysiol; 1993 Jul; 70(1):128-43. PubMed ID: 8395571 [TBL] [Abstract][Full Text] [Related]
26. Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons. Timofeev I; Grenier F; Steriade M J Neurophysiol; 1998 Sep; 80(3):1495-513. PubMed ID: 9744954 [TBL] [Abstract][Full Text] [Related]
27. Unit activity of rat basal forebrain neurons: relationship to cortical activity. Nunez A Neuroscience; 1996 Jun; 72(3):757-66. PubMed ID: 9157321 [TBL] [Abstract][Full Text] [Related]
28. Fluctuations in pyramid-pyramid excitatory postsynaptic potentials modified by presynaptic firing pattern and postsynaptic membrane potential using paired intracellular recordings in rat neocortex. Thomson AM; West DC Neuroscience; 1993 May; 54(2):329-46. PubMed ID: 8336828 [TBL] [Abstract][Full Text] [Related]
29. Integrative properties and transfer function of cortical neurons initiating absence seizures in a rat genetic model. Williams MS; Altwegg-Boussac T; Chavez M; Lecas S; Mahon S; Charpier S J Physiol; 2016 Nov; 594(22):6733-6751. PubMed ID: 27311433 [TBL] [Abstract][Full Text] [Related]
30. Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. Steriade M; Datta S; Paré D; Oakson G; Curró Dossi RC J Neurosci; 1990 Aug; 10(8):2541-59. PubMed ID: 2388079 [TBL] [Abstract][Full Text] [Related]
31. Activity dependence of action potential duration in rat supraoptic neurosecretory neurones recorded in vitro. Bourque CW; Renaud LP J Physiol; 1985 Jun; 363():429-39. PubMed ID: 3926995 [TBL] [Abstract][Full Text] [Related]
32. Histaminergic effects on the frequency of repetitive spike firing in rat insular cortex. Takei H; Song L; Ebihara K; Shirakawa T; Koshikawa N; Kobayashi M Neurosci Lett; 2012 Jun; 518(1):55-9. PubMed ID: 22580200 [TBL] [Abstract][Full Text] [Related]
33. Development of hypersynchrony in the cortical network during chemoconvulsant-induced epileptic seizures in vivo. Cymerblit-Sabba A; Schiller Y J Neurophysiol; 2012 Mar; 107(6):1718-30. PubMed ID: 22190619 [TBL] [Abstract][Full Text] [Related]
35. [The role of electrophysiological properties of neurons in mechanisms of discharge grouping in the cortex]. Karpuk NN; Vorob'ev VV Zh Vyssh Nerv Deiat Im I P Pavlova; 2003; 53(5):595-603. PubMed ID: 14658325 [TBL] [Abstract][Full Text] [Related]
36. Repetitive firing and oscillatory activity of pyramidal-like bursting neurons in the rat subiculum. Mattia D; Kawasaki H; Avoli M Exp Brain Res; 1997 May; 114(3):507-17. PubMed ID: 9187287 [TBL] [Abstract][Full Text] [Related]
37. Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. Lytton WW; Contreras D; Destexhe A; Steriade M J Neurophysiol; 1997 Apr; 77(4):1679-96. PubMed ID: 9114229 [TBL] [Abstract][Full Text] [Related]
38. K Boddum K; Hougaard C; Xiao-Ying Lin J; von Schoubye NL; Jensen HS; Grunnet M; Jespersen T Neuropharmacology; 2017 May; 118():102-112. PubMed ID: 28242439 [TBL] [Abstract][Full Text] [Related]
39. Synergistic Modulation of γ-Aminobutyric Acid Type A Receptor-Mediated Synaptic Inhibition in Cortical Networks by Allopregnanolone and Propofol. Drexler B; Balk M; Antkowiak B Anesth Analg; 2016 Oct; 123(4):877-83. PubMed ID: 27529315 [TBL] [Abstract][Full Text] [Related]
40. Variable Action Potential Backpropagation during Tonic Firing and Low-Threshold Spike Bursts in Thalamocortical But Not Thalamic Reticular Nucleus Neurons. Connelly WM; Crunelli V; Errington AC J Neurosci; 2017 May; 37(21):5319-5333. PubMed ID: 28450536 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]