BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 31859298)

  • 21. New gelatin-based hydrogels via enzymatic networking.
    Crescenzi V; Francescangeli A; Taglienti A
    Biomacromolecules; 2002; 3(6):1384-91. PubMed ID: 12425680
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanically tuned 3 dimensional hydrogels support human mammary fibroblast growth and viability.
    Woods K; Thigpen C; Wang JP; Park H; Hielscher A
    BMC Cell Biol; 2017 Dec; 18(1):35. PubMed ID: 29246104
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymatically cross-linked gelatin/chitosan hydrogels: tuning gel properties and cellular response.
    da Silva MA; Bode F; Drake AF; Goldoni S; Stevens MM; Dreiss CA
    Macromol Biosci; 2014 Jun; 14(6):817-30. PubMed ID: 24550134
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design, fabrication and characterization of oxidized alginate-gelatin hydrogels for muscle tissue engineering applications.
    Baniasadi H; Mashayekhan S; Fadaoddini S; Haghirsharifzamini Y
    J Biomater Appl; 2016 Jul; 31(1):152-61. PubMed ID: 26916948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visible Light Cross-Linking of Gelatin Hydrogels Offers an Enhanced Cell Microenvironment with Improved Light Penetration Depth.
    Lim KS; Klotz BJ; Lindberg GCJ; Melchels FPW; Hooper GJ; Malda J; Gawlitta D; Woodfield TBF
    Macromol Biosci; 2019 Jun; 19(6):e1900098. PubMed ID: 31026127
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tunable Cross-Linking and Adhesion of Gelatin Hydrogels via Bioorthogonal Click Chemistry.
    Contessi Negrini N; Angelova Volponi A; Sharpe PT; Celiz AD
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4330-4346. PubMed ID: 34086456
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels.
    Camci-Unal G; Cuttica D; Annabi N; Demarchi D; Khademhosseini A
    Biomacromolecules; 2013 Apr; 14(4):1085-92. PubMed ID: 23419055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of Micromolded Gelatin Hydrogels for Long-Term Culture of Aligned Skeletal Myotubes.
    Suh GC; Bettadapur A; Santoso JW; McCain ML
    Methods Mol Biol; 2017; 1668():147-163. PubMed ID: 28842908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cellular Response to Reagent-Free Electron-Irradiated Gelatin Hydrogels.
    Wisotzki EI; Friedrich RP; Weidt A; Alexiou C; Mayr SG; Zink M
    Macromol Biosci; 2016 Jun; 16(6):914-24. PubMed ID: 26937853
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-aspect-ratio water-dispersed gold nanowires incorporated within gelatin methacrylate hydrogels for constructing cardiac tissues in vitro.
    Li XP; Qu KY; Zhang F; Jiang HN; Zhang N; Nihad C; Liu CM; Wu KH; Wang XW; Huang NP
    J Mater Chem B; 2020 Aug; 8(32):7213-7224. PubMed ID: 32638823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzymatically cross-linked gelatin-phenol hydrogels with a broader stiffness range for osteogenic differentiation of human mesenchymal stem cells.
    Wang LS; Du C; Chung JE; Kurisawa M
    Acta Biomater; 2012 May; 8(5):1826-37. PubMed ID: 22343003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal.
    Xing Q; Yates K; Vogt C; Qian Z; Frost MC; Zhao F
    Sci Rep; 2014 Apr; 4():4706. PubMed ID: 24736500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications.
    Karimi A; Navidbakhsh M
    Biomed Tech (Berl); 2014 Dec; 59(6):479-86. PubMed ID: 24988278
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of thin gelatin hydrogel membranes with balloon properties for dynamic tissue engineering.
    Jepsen ML; Nielsen LH; Boisen A; Almdal K; Dufva M
    Biopolymers; 2019 Jan; 110(1):e23241. PubMed ID: 30536858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hybrid Methacrylated Gelatin and Hyaluronic Acid Hydrogel Scaffolds. Preparation and Systematic Characterization for Prospective Tissue Engineering Applications.
    Velasco-Rodriguez B; Diaz-Vidal T; Rosales-Rivera LC; García-González CA; Alvarez-Lorenzo C; Al-Modlej A; Domínguez-Arca V; Prieto G; Barbosa S; Soltero Martínez JFA; Taboada P
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34201769
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanically Robust Electrospun Hydrogel Scaffolds Crosslinked via Supramolecular Interactions.
    Mollet BB; Spaans S; Fard PG; Bax NAM; Bouten CVC; Dankers PYW
    Macromol Biosci; 2017 Sep; 17(9):. PubMed ID: 28671766
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues.
    McCain ML; Agarwal A; Nesmith HW; Nesmith AP; Parker KK
    Biomaterials; 2014 Jul; 35(21):5462-71. PubMed ID: 24731714
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enzymatic Cross-Linking of Resilin-Based Proteins for Vascular Tissue Engineering Applications.
    Kim Y; Gill EE; Liu JC
    Biomacromolecules; 2016 Aug; 17(8):2530-9. PubMed ID: 27400383
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Click-Crosslinked Injectable Gelatin Hydrogels.
    Koshy ST; Desai RM; Joly P; Li J; Bagrodia RK; Lewin SA; Joshi NS; Mooney DJ
    Adv Healthc Mater; 2016 Mar; 5(5):541-7. PubMed ID: 26806652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transglutaminase reactivity with gelatine: perspective applications in tissue engineering.
    Bertoni F; Barbani N; Giusti P; Ciardelli G
    Biotechnol Lett; 2006 May; 28(10):697-702. PubMed ID: 16791723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.