These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
588 related articles for article (PubMed ID: 31859366)
1. Automatic identification of crossovers in cryo-EM images of murine amyloid protein A fibrils with machine learning. Weber M; Bäuerle A; Schmidt M; Neumann M; Fändrich M; Ropinski T; Schmidt V J Microsc; 2020 Jan; 277(1):12-22. PubMed ID: 31859366 [TBL] [Abstract][Full Text] [Related]
2. Automated picking of amyloid fibrils from cryo-EM images for helical reconstruction with RELION. Thurber KR; Yin Y; Tycko R J Struct Biol; 2021 Jun; 213(2):107736. PubMed ID: 33831509 [TBL] [Abstract][Full Text] [Related]
3. Structural Identification of Individual Helical Amyloid Filaments by Integration of Cryo-Electron Microscopy-Derived Maps in Comparative Morphometric Atomic Force Microscopy Image Analysis. Lutter L; Al-Hilaly YK; Serpell CJ; Tuite MF; Wischik CM; Serpell LC; Xue WF J Mol Biol; 2022 Apr; 434(7):167466. PubMed ID: 35077765 [TBL] [Abstract][Full Text] [Related]
4. AutoCryoPicker: an unsupervised learning approach for fully automated single particle picking in Cryo-EM images. Al-Azzawi A; Ouadou A; Tanner JJ; Cheng J BMC Bioinformatics; 2019 Jun; 20(1):326. PubMed ID: 31195977 [TBL] [Abstract][Full Text] [Related]
5. Clustering polymorphs of tau and IAPP fibrils with the CHEP algorithm. Pothula KR; Geraets JA; Ferber II; Schröder GF Prog Biophys Mol Biol; 2021 Mar; 160():16-25. PubMed ID: 33556421 [TBL] [Abstract][Full Text] [Related]
6. Cryo-EM fibril structures from systemic AA amyloidosis reveal the species complementarity of pathological amyloids. Liberta F; Loerch S; Rennegarbe M; Schierhorn A; Westermark P; Westermark GT; Hazenberg BPC; Grigorieff N; Fändrich M; Schmidt M Nat Commun; 2019 Mar; 10(1):1104. PubMed ID: 30846696 [TBL] [Abstract][Full Text] [Related]
7. Cryo-EM Structure of the Full-length hnRNPA1 Amyloid Fibril. Sharma K; Banerjee S; Savran D; Rajes C; Wiese S; Girdhar A; Schwierz N; Lee C; Shorter J; Schmidt M; Guo L; Fändrich M J Mol Biol; 2023 Sep; 435(18):168211. PubMed ID: 37481159 [TBL] [Abstract][Full Text] [Related]
8. MpUL-multi: Software for Calculation of Amyloid Fibril Mass per Unit Length from TB-TEM Images. Iadanza MG; Jackson MP; Radford SE; Ranson NA Sci Rep; 2016 Feb; 6():21078. PubMed ID: 26867957 [TBL] [Abstract][Full Text] [Related]
9. Comparison of Alzheimer Abeta(1-40) and Abeta(1-42) amyloid fibrils reveals similar protofilament structures. Schmidt M; Sachse C; Richter W; Xu C; Fändrich M; Grigorieff N Proc Natl Acad Sci U S A; 2009 Nov; 106(47):19813-8. PubMed ID: 19843697 [TBL] [Abstract][Full Text] [Related]
10. An Unsupervised Classification Algorithm for Heterogeneous Cryo-EM Projection Images Based on Autoencoders. Wang X; Lu Y; Lin X; Li J; Zhang Z Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37176089 [TBL] [Abstract][Full Text] [Related]
11. A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy. Zhu Y; Ouyang Q; Mao Y BMC Bioinformatics; 2017 Jul; 18(1):348. PubMed ID: 28732461 [TBL] [Abstract][Full Text] [Related]
12. The protofilament structure of insulin amyloid fibrils. Jiménez JL; Nettleton EJ; Bouchard M; Robinson CV; Dobson CM; Saibil HR Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9196-201. PubMed ID: 12093917 [TBL] [Abstract][Full Text] [Related]
13. Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy. Li Y; Zhao C; Luo F; Liu Z; Gui X; Luo Z; Zhang X; Li D; Liu C; Li X Cell Res; 2018 Sep; 28(9):897-903. PubMed ID: 30065316 [TBL] [Abstract][Full Text] [Related]
14. Challenges in sample preparation and structure determination of amyloids by cryo-EM. Zielinski M; Röder C; Schröder GF J Biol Chem; 2021 Aug; 297(2):100938. PubMed ID: 34224730 [TBL] [Abstract][Full Text] [Related]
15. Cryo-EM Analysis of the Effect of Seeding with Brain-derived Aβ Amyloid Fibrils. Pfeiffer PB; Ugrina M; Schwierz N; Sigurdson CJ; Schmidt M; Fändrich M J Mol Biol; 2024 Feb; 436(4):168422. PubMed ID: 38158175 [TBL] [Abstract][Full Text] [Related]
16. Deep-learning with synthetic data enables automated picking of cryo-EM particle images of biological macromolecules. Yao R; Qian J; Huang Q Bioinformatics; 2020 Feb; 36(4):1252-1259. PubMed ID: 31584618 [TBL] [Abstract][Full Text] [Related]
17. Cryo-EM demonstrates the in vitro proliferation of an ex vivo amyloid fibril morphology by seeding. Heerde T; Rennegarbe M; Biedermann A; Savran D; Pfeiffer PB; Hitzenberger M; Baur J; Puscalau-Girtu I; Zacharias M; Schwierz N; Haupt C; Schmidt M; Fändrich M Nat Commun; 2022 Jan; 13(1):85. PubMed ID: 35013242 [TBL] [Abstract][Full Text] [Related]
18. Peptide dimer structure in an Aβ(1-42) fibril visualized with cryo-EM. Schmidt M; Rohou A; Lasker K; Yadav JK; Schiene-Fischer C; Fändrich M; Grigorieff N Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11858-63. PubMed ID: 26351699 [TBL] [Abstract][Full Text] [Related]
19. Cryo-EM reveals the steric zipper structure of a light chain-derived amyloid fibril. Schmidt A; Annamalai K; Schmidt M; Grigorieff N; Fändrich M Proc Natl Acad Sci U S A; 2016 May; 113(22):6200-5. PubMed ID: 27185936 [TBL] [Abstract][Full Text] [Related]
20. AA amyloid fibrils from diseased tissue are structurally different from in vitro formed SAA fibrils. Bansal A; Schmidt M; Rennegarbe M; Haupt C; Liberta F; Stecher S; Puscalau-Girtu I; Biedermann A; Fändrich M Nat Commun; 2021 Feb; 12(1):1013. PubMed ID: 33579941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]