These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo. Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499 [TBL] [Abstract][Full Text] [Related]
5. 3D printing of chitooligosaccharide-polyethylene glycol diacrylate hydrogel inks for bone tissue regeneration. Rajabi M; Cabral JD; Saunderson S; Ali MA J Biomed Mater Res A; 2023 Sep; 111(9):1468-1481. PubMed ID: 37066870 [TBL] [Abstract][Full Text] [Related]
6. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks. Zhang R; Larsen NB Lab Chip; 2017 Dec; 17(24):4273-4282. PubMed ID: 29116271 [TBL] [Abstract][Full Text] [Related]
7. 3D-Printed Extracellular Matrix/Polyethylene Glycol Diacrylate Hydrogel Incorporating the Anti-inflammatory Phytomolecule Honokiol for Regeneration of Osteochondral Defects. Zhu S; Chen P; Chen Y; Li M; Chen C; Lu H Am J Sports Med; 2020 Sep; 48(11):2808-2818. PubMed ID: 32762553 [TBL] [Abstract][Full Text] [Related]
8. Numerical investigation of the influence of pattern topology on the mechanical behavior of PEGDA hydrogels. Jin T; Stanciulescu I Acta Biomater; 2017 Feb; 49():247-259. PubMed ID: 27856282 [TBL] [Abstract][Full Text] [Related]
9. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application. Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274 [TBL] [Abstract][Full Text] [Related]
10. Composite Hydrogels With Controlled Degradation in 3D Printed Scaffolds. Jiang Z; Shaha R; Jiang K; McBride R; Frick C; Oakey J IEEE Trans Nanobioscience; 2019 Apr; 18(2):261-264. PubMed ID: 30892230 [TBL] [Abstract][Full Text] [Related]
11. Engineered Living Material Bioreactors with Tunable Mechanical Properties using Vat Photopolymerization. Altin-Yavuzarslan G; Sadaba N; Brooks SM; Alper HS; Nelson A Small; 2024 May; 20(22):e2306564. PubMed ID: 38105580 [TBL] [Abstract][Full Text] [Related]
12. Partitioning of hydrogels in 3D-printed microchannels. Kim YT; Bohjanen S; Bhattacharjee N; Folch A Lab Chip; 2019 Sep; 19(18):3086-3093. PubMed ID: 31502633 [TBL] [Abstract][Full Text] [Related]
13. Multilayer microfluidic PEGDA hydrogels. Cuchiara MP; Allen AC; Chen TM; Miller JS; West JL Biomaterials; 2010 Jul; 31(21):5491-7. PubMed ID: 20447685 [TBL] [Abstract][Full Text] [Related]
14. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733 [TBL] [Abstract][Full Text] [Related]
15. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
16. Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography. Morris VB; Nimbalkar S; Younesi M; McClellan P; Akkus O Ann Biomed Eng; 2017 Jan; 45(1):286-296. PubMed ID: 27164837 [TBL] [Abstract][Full Text] [Related]
17. Hydrogel-Assisted Double Molding Enables Rapid Replication of Stereolithographic 3D Prints for Engineered Tissue Design. Simmons DW; Schuftan DR; Ramahdita G; Huebsch N ACS Appl Mater Interfaces; 2023 May; 15(21):25313-25323. PubMed ID: 37200617 [TBL] [Abstract][Full Text] [Related]
18. A cholecystic extracellular matrix-based hybrid hydrogel for skeletal muscle tissue engineering. Raj R; Sobhan PK; Pratheesh KV; Anilkumar TV J Biomed Mater Res A; 2020 Sep; 108(9):1922-1933. PubMed ID: 32319161 [TBL] [Abstract][Full Text] [Related]
19. Assembly of RGD-Modified Hydrogel Micromodules into Permeable Three-Dimensional Hollow Microtissues Mimicking in Vivo Tissue Structures. Wang H; Cui J; Zheng Z; Shi Q; Sun T; Liu X; Huang Q; Fukuda T ACS Appl Mater Interfaces; 2017 Dec; 9(48):41669-41679. PubMed ID: 29130303 [TBL] [Abstract][Full Text] [Related]
20. Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs. Jung JW; Lee JS; Cho DW Sci Rep; 2016 Feb; 6():21685. PubMed ID: 26899876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]