These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
77 related articles for article (PubMed ID: 31860852)
1. Mathematical modeling of the elastic properties of the mucous flaps in conducting patchwork operations of the oral cavity. Avetikov DS; Kaplun DV; Holovanova IA; Yunda AM; Skikevych MG Wiad Lek; 2019; 72(11 cz 1):2089-2093. PubMed ID: 31860852 [TBL] [Abstract][Full Text] [Related]
2. A finite element model of skin deformation. III. The finite element model. Larrabee WF; Galt JA Laryngoscope; 1986 Apr; 96(4):413-9. PubMed ID: 3959702 [TBL] [Abstract][Full Text] [Related]
3. A finite element model of skin deformation. II. An experimental model of skin deformation. Larrabee WF; Sutton D Laryngoscope; 1986 Apr; 96(4):406-12. PubMed ID: 3959701 [TBL] [Abstract][Full Text] [Related]
4. Biomechanical and viscoelastic properties of skin, SMAS, and composite flaps as they pertain to rhytidectomy. Saulis AS; Lautenschlager EP; Mustoe TA Plast Reconstr Surg; 2002 Aug; 110(2):590-8; discussion 599-600. PubMed ID: 12142682 [TBL] [Abstract][Full Text] [Related]
5. A finite element model of skin deformation. I. Biomechanics of skin and soft tissue: a review. Larrabee WF Laryngoscope; 1986 Apr; 96(4):399-405. PubMed ID: 3959700 [TBL] [Abstract][Full Text] [Related]
6. Numerical analysis of the V-Y shaped advancement flap. Remache D; Chambert J; Pauchot J; Jacquet E Med Eng Phys; 2015 Oct; 37(10):987-94. PubMed ID: 26342442 [TBL] [Abstract][Full Text] [Related]
7. From the rhombic transposition flap toward Z-plasty: An optimized design using the finite element method. Rajabi A; Dolovich AT; Johnston JD J Biomech; 2015 Oct; 48(13):3672-8. PubMed ID: 26341459 [TBL] [Abstract][Full Text] [Related]
8. Effectiveness of Two Different Lingual Flap Advancing Techniques for Vertical Bone Augmentation in the Posterior Mandible: A Comparative, Split-Mouth Cadaver Study. Urban I; Traxler H; Romero-Bustillos M; Farkasdi S; Bartee B; Baksa G; Avila-Ortiz G Int J Periodontics Restorative Dent; 2018; 38(1):35-40. PubMed ID: 29240202 [TBL] [Abstract][Full Text] [Related]
9. A mouse model for studying rapid intraoperative methods of skin closure and wound healing. Zhu X; Hall D; Ridenour G; Boo S; Jennings T; Hochberg J; Cilento E; Reilly FD Med Sci Monit; 2003 Mar; 9(3):BR109-15. PubMed ID: 12640332 [TBL] [Abstract][Full Text] [Related]
10. Modeling deformation behavior of the baseball. Nicholls RL; Miller K; Elliott BC J Appl Biomech; 2005 Feb; 21(1):18-30. PubMed ID: 16131702 [TBL] [Abstract][Full Text] [Related]
11. Wound tension and 'closability' with keystone flaps, V-Y flaps and primary closure: a study in fresh-frozen cadavers. Donovan LC; Douglas CD; Van Helden D ANZ J Surg; 2018 May; 88(5):486-490. PubMed ID: 28922690 [TBL] [Abstract][Full Text] [Related]
12. Clinical applications of basic research that shows reducing skin tension could prevent and treat abnormal scarring: the importance of fascial/subcutaneous tensile reduction sutures and flap surgery for keloid and hypertrophic scar reconstruction. Ogawa R; Akaishi S; Huang C; Dohi T; Aoki M; Omori Y; Koike S; Kobe K; Akimoto M; Hyakusoku H J Nippon Med Sch; 2011; 78(2):68-76. PubMed ID: 21551963 [TBL] [Abstract][Full Text] [Related]
13. Computer-aided analysis of Z-plasties. Kawabata H; Kawai H; Masada K; Ono K Plast Reconstr Surg; 1989 Feb; 83(2):319-25. PubMed ID: 2911632 [TBL] [Abstract][Full Text] [Related]
14. Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension. Lally C; Reid AJ; Prendergast PJ Ann Biomed Eng; 2004 Oct; 32(10):1355-64. PubMed ID: 15535054 [TBL] [Abstract][Full Text] [Related]
15. Modelling and simulation of porcine liver tissue indentation using finite element method and uniaxial stress-strain data. Fu YB; Chui CK J Biomech; 2014 Jul; 47(10):2430-5. PubMed ID: 24811044 [TBL] [Abstract][Full Text] [Related]
16. Continuum modeling of mechano-dependent reactions in tissues composed of mechanically active cells. Stein AA; Logvenkov SA; Volodyaev IV Biosystems; 2018 Nov; 173():225-234. PubMed ID: 30267853 [TBL] [Abstract][Full Text] [Related]
17. Relationships between bone morphology and bone elastic properties can be accurately quantified using high-resolution computer reconstructions. Van Rietbergen B; Odgaard A; Kabel J; Huiskes R J Orthop Res; 1998 Jan; 16(1):23-8. PubMed ID: 9565069 [TBL] [Abstract][Full Text] [Related]
18. Analytical derivation of elasticity in breast phantoms for deformation tracking. Groenhuis V; Visentin F; Siepel FJ; Maris BM; Dall'alba D; Fiorini P; Stramigioli S Int J Comput Assist Radiol Surg; 2018 Oct; 13(10):1641-1650. PubMed ID: 29869320 [TBL] [Abstract][Full Text] [Related]
19. Biomechanical comparison of sinus floor elevation and alternative treatment methods for dental implant placement. Küçükkurt S; Alpaslan G; Kurt A Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):284-293. PubMed ID: 27501343 [TBL] [Abstract][Full Text] [Related]
20. Comparison of mechanical and ultrasound elastic modulus of ovine tibial cortical bone. Grant CA; Wilson LJ; Langton C; Epari D Med Eng Phys; 2014 Jul; 36(7):869-74. PubMed ID: 24793408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]