BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31861094)

  • 21. Structural explanation of the rheology of a colloidal suspension under high dc electric fields.
    Espín MJ; Delgado AV; González-Caballero F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041503. PubMed ID: 16711805
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microemulsion polymerized polyaniline/montmorillonite nanocomposite and its electrorheology.
    Song DH; Lee HM; Choi HJ
    J Nanosci Nanotechnol; 2009 Feb; 9(2):1501-4. PubMed ID: 19441556
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrorheology of graphene oxide.
    Zhang WL; Liu YD; Choi HJ; Kim SG
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2267-72. PubMed ID: 22476845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polyaniline Coated Core-Shell Typed Stimuli-Responsive Microspheres and Their Electrorheology.
    Dong YZ; Han WJ; Choi HJ
    Polymers (Basel); 2018 Mar; 10(3):. PubMed ID: 30966334
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Silica-graphene oxide hybrid composite particles and their electroresponsive characteristics.
    Zhang WL; Choi HJ
    Langmuir; 2012 May; 28(17):7055-62. PubMed ID: 22486527
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modifying the flocculation of microfibrillated cellulose suspensions by soluble polysaccharides under conditions unfavorable to adsorption.
    Sorvari A; Saarinen T; Haavisto S; Salmela J; Vuoriluoto M; Seppälä J
    Carbohydr Polym; 2014 Jun; 106():283-92. PubMed ID: 24721080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrorheological fluid under elongation, compression, and shearing.
    Tian Y; Meng Y; Mao H; Wen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):031507. PubMed ID: 11909066
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced Electrorheological Response of Cellulose: A Double Effect of Modification by Urea-Terminated Silane.
    Liu Z; Chen P; Jin X; Wang LM; Liu YD; Choi HJ
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960792
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphorylation of potato starch and its electrorheological suspension.
    Sung JH; Park DP; Park BJ; Choi HJ; Jhon MS
    Biomacromolecules; 2005; 6(4):2182-8. PubMed ID: 16004461
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of hydrophilicity of polyaniline particles on their electrorheology: steady flow and dynamic behaviour.
    Stěnička M; Pavlínek V; Sáha P; Blinova NV; Stejskal J; Quadrat O
    J Colloid Interface Sci; 2010 Jun; 346(1):236-40. PubMed ID: 20227708
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Core-shell-structured monodisperse copolymer/silica particle suspension and its electrorheological response.
    Liu YD; Quan X; Hwang B; Kwon YK; Choi HJ
    Langmuir; 2014 Feb; 30(7):1729-34. PubMed ID: 24512519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfibrillated Cellulose with a Lower Degree of Polymerization; Synthesis via Sulfuric Acid Hydrolysis under Ultrasonic Treatment.
    Malyar YN; Sudakova IG; Borovkova VS; Chudina AI; Mazurova EV; Vorobyev SA; Fetisova OY; Elsufiev EV; Ivanov IP
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850188
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced response of titanium doped iron(ii) oxalate under electric field.
    Li C; Wei H; Hu X; Chen Z; Xie X; Chen G; Liu A; Huang Y; Wen W
    RSC Adv; 2022 Nov; 12(49):31959-31965. PubMed ID: 36380922
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reversible shear thickening at low shear rates of electrorheological fluids under electric fields.
    Tian Y; Zhang M; Jiang J; Pesika N; Zeng H; Israelachvili J; Meng Y; Wen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011401. PubMed ID: 21405692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transient response of an electrorheological fluid under square-wave electric field excitation.
    Tian Y; Li C; Zhang M; Meng Y; Wen S
    J Colloid Interface Sci; 2005 Aug; 288(1):290-7. PubMed ID: 15927589
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monodisperse conducting colloidal dipoles with symmetric dimer structure for enhancing electrorheology properties.
    Shin K; Kim D; Cho JC; Lim HS; Kim JW; Suh KD
    J Colloid Interface Sci; 2012 May; 374(1):18-24. PubMed ID: 22365839
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transformation of Cellulose via Two-Step Carbonization to Conducting Carbonaceous Particles and Their Outstanding Electrorheological Performance.
    Plachy T; Kutalkova E; Skoda D; Holcapkova P
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrorheological Fluids with High Shear Stress Based on Wrinkly Tin Titanyl Oxalate.
    Wu J; Zhang L; Xin X; Zhang Y; Wang H; Sun A; Cheng Y; Chen X; Xu G
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6785-6792. PubMed ID: 29388421
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pickering-emulsion-polymerized polystyrene/Fe2O3 composite particles and their magnetoresponsive characteristics.
    Kim YJ; Liu YD; Seo Y; Choi HJ
    Langmuir; 2013 Apr; 29(16):4959-65. PubMed ID: 23534530
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena.
    Nechyporchuk O; Belgacem MN; Pignon F
    Carbohydr Polym; 2014 Nov; 112():432-9. PubMed ID: 25129764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.