BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 31861156)

  • 21. MiRNA-92a protects pancreatic B-cell function by targeting KLF2 in diabetes mellitus.
    Wang W; Wang J; Yan M; Jiang J; Bian A
    Biochem Biophys Res Commun; 2018 Jun; 500(3):577-582. PubMed ID: 29660330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MicroRNAs in type 1 diabetes: new research progress and potential directions.
    Miao C; Chang J; Zhang G; Fang Y
    Biochem Cell Biol; 2018 Oct; 96(5):498-506. PubMed ID: 29554441
    [TBL] [Abstract][Full Text] [Related]  

  • 23. miRNAs: novel regulators of autoimmunity-mediated pancreatic β-cell destruction in type 1 diabetes.
    Zheng Y; Wang Z; Zhou Z
    Cell Mol Immunol; 2017 Jun; 14(6):488-496. PubMed ID: 28317889
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Islet-specific microRNAs in pancreas development, regeneration and diabetes.
    Joglekar MV; Parekh VS; Hardikar AA
    Indian J Exp Biol; 2011 Jun; 49(6):401-8. PubMed ID: 21702218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bispecific therapeutic aptamers for targeted therapy of cancer: a review on cellular perspective.
    Vandghanooni S; Eskandani M; Barar J; Omidi Y
    J Mol Med (Berl); 2018 Sep; 96(9):885-902. PubMed ID: 30056527
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of microRNAs in diabetes.
    Tang X; Tang G; Ozcan S
    Biochim Biophys Acta; 2008 Nov; 1779(11):697-701. PubMed ID: 18655850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MicroRNAs as therapeutic targets in human diseases.
    Jeyaseelan K; Herath WB; Armugam A
    Expert Opin Ther Targets; 2007 Aug; 11(8):1119-29. PubMed ID: 17665982
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aptamer-MiRNA Conjugates for Cancer Cell-Targeted Delivery.
    Esposito CL; Catuogno S; de Franciscis V
    Methods Mol Biol; 2016; 1364():197-208. PubMed ID: 26472452
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MicroRNAs as therapeutic targets in atherosclerosis.
    Loyer X; Mallat Z; Boulanger CM; Tedgui A
    Expert Opin Ther Targets; 2015 Apr; 19(4):489-96. PubMed ID: 25464904
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Promise and Challenge of Therapeutic MicroRNA Silencing in Diabetes and Metabolic Diseases.
    Sethupathy P
    Curr Diab Rep; 2016 Jun; 16(6):52. PubMed ID: 27112956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MicroRNAs as regulators of beta-cell function and dysfunction.
    Osmai M; Osmai Y; Bang-Berthelsen CH; Pallesen EM; Vestergaard AL; Novotny GW; Pociot F; Mandrup-Poulsen T
    Diabetes Metab Res Rev; 2016 May; 32(4):334-49. PubMed ID: 26418758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MicroRNAs: Biomarkers for cardiovascular disease in patients with diabetes mellitus.
    Briasoulis A; Tousoulis D; Vogiatzi G; Siasos G; Papageorgiou N; Oikonomou E; Genimata V; Konsola T; Stefanadis C
    Curr Top Med Chem; 2013; 13(13):1533-9. PubMed ID: 23745805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of microRNAs in islet β-cell development.
    Kaviani M; Azarpira N; Karimi MH; Al-Abdullah I
    Cell Biol Int; 2016 Dec; 40(12):1248-1255. PubMed ID: 27743454
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Emerging Role of MitomiRs in the Pathophysiology of Human Disease.
    Duarte FV; Palmeira CM; Rolo AP
    Adv Exp Med Biol; 2015; 888():123-54. PubMed ID: 26663182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. AGE/RAGE signalling regulation by miRNAs: associations with diabetic complications and therapeutic potential.
    Piperi C; Goumenos A; Adamopoulos C; Papavassiliou AG
    Int J Biochem Cell Biol; 2015 Mar; 60():197-201. PubMed ID: 25603271
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MicroRNA single-nucleotide polymorphisms and diabetes mellitus: A comprehensive review.
    Zhang Y; Bai R; Liu C; Ma C; Chen X; Yang J; Sun D
    Clin Genet; 2019 Apr; 95(4):451-461. PubMed ID: 30536647
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of a Panel of MiRNAs as Positive Regulators of Insulin Release in Pancreatic Β-Cells.
    Lang H; Xiang Y; Lin N; Ai Z; You Z; Xiao J; Liu D; Yang Y
    Cell Physiol Biochem; 2018; 48(1):185-193. PubMed ID: 30007975
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Screening of microRNAs associated with Alzheimer's disease using oxidative stress cell model and different strains of senescence accelerated mice.
    Zhang R; Zhang Q; Niu J; Lu K; Xie B; Cui D; Xu S
    J Neurol Sci; 2014 Mar; 338(1-2):57-64. PubMed ID: 24423585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibitor of differentiation proteins protect against oxidative stress by regulating the antioxidant-mitochondrial response in mouse beta cells.
    Bensellam M; Montgomery MK; Luzuriaga J; Chan JY; Laybutt DR
    Diabetologia; 2015 Apr; 58(4):758-70. PubMed ID: 25636209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.