These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31861289)

  • 1. Structural Core-Shell beyond Chemical Homogeneity in Non-Stoichiometric Cu
    Zhang B; Zhao X; Dong T; Zhang A; Zhang X; Han G; Zhou X
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31861289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the Thermal Stability of Palladium-Platinum Core-Shell Nanocrystals by In Situ Transmission Electron Microscopy and Density Functional Theory.
    Vara M; Roling LT; Wang X; Elnabawy AO; Hood ZD; Chi M; Mavrikakis M; Xia Y
    ACS Nano; 2017 May; 11(5):4571-4581. PubMed ID: 28485913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal behavior of Pd@SiO
    Baaziz W; Bahri M; Gay AS; Chaumonnot A; Uzio D; Valette S; Hirlimann C; Ersen O
    Nanoscale; 2018 Nov; 10(43):20178-20188. PubMed ID: 30362491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanosized (mu12-Pt)Pd164-xPtx(CO)72(PPh3)20 (x approximately 7) containing Pt-centered four-shell 165-atom Pd-Pt core with unprecedented intershell bridging carbonyl ligands: comparative analysis of icosahedral shell-growth patterns with geometrically related Pd145(CO)x(PEt3)30 (x approximately 60) containing capped three-shell Pd145 core.
    Mednikov EG; Jewell MC; Dahl LF
    J Am Chem Soc; 2007 Sep; 129(37):11619-30. PubMed ID: 17722929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of plasmonic gold-silica core-shell nanoparticle stability in dye-sensitized solar cell applications.
    Törngren B; Akitsu K; Ylinen A; Sandén S; Jiang H; Ruokolainen J; Komatsu M; Hamamura T; Nakazaki J; Kubo T; Segawa H; Österbacka R; Smått JH
    J Colloid Interface Sci; 2014 Aug; 427():54-61. PubMed ID: 24388614
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Zhu S; Nguyen MT; Tokunaga T; Wen CY; Yonezawa T
    Nanoscale Adv; 2020 Apr; 2(4):1456-1464. PubMed ID: 36132324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic-scale in situ observation of electron beam and heat induced crystallization of Ge nanoparticles and transformation of Ag@Ge core-shell nanocrystals.
    Qi X; Bustillo KC; Kauzlarich SM
    J Chem Phys; 2023 Apr; 158(16):. PubMed ID: 37093142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-shell reconfiguration through thermal annealing in Fe(x)O/CoFe2O4 ordered 2D nanocrystal arrays.
    Yalcin AO; de Nijs B; Fan Z; Tichelaar FD; Vanmaekelbergh D; van Blaaderen A; Vlugt TJ; van Huis MA; Zandbergen HW
    Nanotechnology; 2014 Feb; 25(5):055601. PubMed ID: 24407270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable thermodynamic stability of Au-CuPt core-shell trimetallic nanoparticles by controlling the alloy composition: insights from atomistic simulations.
    Huang R; Shao GF; Wen YH; Sun SG
    Phys Chem Chem Phys; 2014 Nov; 16(41):22754-61. PubMed ID: 25234428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and properties of ZnO-HMD@ZnO-Fe/Cu core-shell as advanced material for hydrogen storage.
    Bouazizi N; Boudharaa T; Bargougui R; Vieillard J; Ammar S; Le Derf F; Azzouz A
    J Colloid Interface Sci; 2017 Apr; 491():89-97. PubMed ID: 28012917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eosin-Y sensitized core-shell TiO
    Manikandan VS; Palai AK; Mohanty S; Nayak SK
    J Photochem Photobiol B; 2018 Jun; 183():397-404. PubMed ID: 29778020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fe Core-Carbon Shell Nanoparticles as Advanced MRI Contrast Enhancer.
    Chaudhary RP; Kangasniemi K; Takahashi M; Mohanty SK; Koymen AR
    J Funct Biomater; 2017 Oct; 8(4):. PubMed ID: 28991207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic-scale insights into structural and thermodynamic stability of Pd-Ni bimetallic nanoparticles.
    Huang R; Wen YH; Zhu ZZ; Sun SG
    Phys Chem Chem Phys; 2016 Apr; 18(14):9847-54. PubMed ID: 27003035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring Strategies toward Synthetic Precision Control within Core-Shell Nanowires.
    Salvatore KL; Wong SS
    Acc Chem Res; 2021 Jun; 54(11):2565-2578. PubMed ID: 33989501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Core-shell nanostructures: a simplest two-component system with enhanced properties and multiple applications.
    Singh R; Bhateria R
    Environ Geochem Health; 2021 Jul; 43(7):2459-2482. PubMed ID: 33161517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Simple Route to Synthesize Cu@Ag Core-Shell Bimetallic Nanoparticles and Their Surface-Enhanced Raman Scattering Properties.
    Jin X; Mao A; Ding M; Ding P; Zhang T; Gu X; Xiao W; Yuan J
    Appl Spectrosc; 2016 Oct; 70(10):1692-1699. PubMed ID: 30208721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dually functioned core-shell NaYF
    Zhang Y; Chen B; Xu S; Li X; Zhang J; Sun J; Zheng H; Tong L; Sui G; Zhong H; Xia H; Hua R
    Sci Rep; 2017 Sep; 7(1):11849. PubMed ID: 28928385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic structure and thermal stability of Pt-Fe bimetallic nanoparticles: from alloy to core/shell architectures.
    Huang R; Wen YH; Shao GF; Sun SG
    Phys Chem Chem Phys; 2016 Jun; 18(25):17010-7. PubMed ID: 27297782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.
    Wang C; Baer DR; Amonette JE; Engelhard MH; Antony J; Qiang Y
    J Am Chem Soc; 2009 Jul; 131(25):8824-32. PubMed ID: 19496564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diverse melting modes and structural collapse of hollow bimetallic core-shell nanoparticles: a perspective from molecular dynamics simulations.
    Huang R; Shao GF; Zeng XM; Wen YH
    Sci Rep; 2014 Nov; 4():7051. PubMed ID: 25394424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.