These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 31861639)

  • 1. Physical Workload Tracking Using Human Activity Recognition with Wearable Devices.
    Manjarres J; Narvaez P; Gasser K; Percybrooks W; Pardo M
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31861639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classifier Personalization for Activity Recognition Using Wrist Accelerometers.
    Mannini A; Intille SS
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1585-1594. PubMed ID: 30222588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes.
    Biagetti G; Crippa P; Falaschetti L; Orcioni S; Turchetti C
    Biomed Eng Online; 2018 Nov; 17(Suppl 1):132. PubMed ID: 30458783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defining a systems framework for characterizing physical work demands with wearable sensors.
    Stirling L; Acosta-Sojo Y; Dennerlein JT
    Ann Work Expo Health; 2024 Jun; 68(5):443-465. PubMed ID: 38597679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying Multivariate Segmentation Methods to Human Activity Recognition From Wearable Sensors' Data.
    Li K; Habre R; Deng H; Urman R; Morrison J; Gilliland FD; Ambite JL; Stripelis D; Chiang YY; Lin Y; Bui AA; King C; Hosseini A; Vliet EV; Sarrafzadeh M; Eckel SP
    JMIR Mhealth Uhealth; 2019 Feb; 7(2):e11201. PubMed ID: 30730297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of physiological workload assessment methods using heart rate and accelerometry for a smart wearable system.
    Yang L; Lu K; Forsman M; Lindecrantz K; Seoane F; Ekblom Ö; Eklund J
    Ergonomics; 2019 May; 62(5):694-705. PubMed ID: 30806164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial Intelligence Based Approach for Classification of Human Activities Using MEMS Sensors Data.
    Khan YA; Imaduddin S; Singh YP; Wajid M; Usman M; Abbas M
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of a Participatory Ergonomics Intervention With Wearable Technical Measurements of Physical Workload in the Construction Industry: Cluster Randomized Controlled Trial.
    Brandt M; Madeleine P; Samani A; Ajslev JZ; Jakobsen MD; Sundstrup E; Andersen LL
    J Med Internet Res; 2018 Dec; 20(12):e10272. PubMed ID: 30567694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical Activity Recognition Based on a Parallel Approach for an Ensemble of Machine Learning and Deep Learning Classifiers.
    Abid M; Khabou A; Ouakrim Y; Watel H; Chemcki S; Mitiche A; Benazza-Benyahia A; Mezghani N
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MBioTracker: Multimodal Self-Aware Bio-Monitoring Wearable System for Online Workload Detection.
    DellrAgnola F; Pale U; Marino R; Arza A; Atienza D
    IEEE Trans Biomed Circuits Syst; 2021 Oct; 15(5):994-1007. PubMed ID: 34495839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A general framework for sensor-based human activity recognition.
    Köping L; Shirahama K; Grzegorzek M
    Comput Biol Med; 2018 Apr; 95():248-260. PubMed ID: 29361267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracting aerobic system dynamics during unsupervised activities of daily living using wearable sensor machine learning models.
    Beltrame T; Amelard R; Wong A; Hughson RL
    J Appl Physiol (1985); 2018 Feb; 124(2):473-481. PubMed ID: 28596271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Risk Assessment Detection for Weak People by Parallel Training Logical Execution of a Supervised Learning System Based on an IoT Wearable MEMS Accelerometer.
    Hoang ML; Nkembi AA; Pham PL
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Framework for Maternal Physical Activities and Health Monitoring Using Wearable Sensors.
    Ullah F; Iqbal A; Iqbal S; Kwak D; Anwar H; Khan A; Ullah R; Siddique H; Kwak KS
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Wearable Device for Food Intake and Physical Activity Recognition.
    Farooq M; Sazonov E
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27409622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Racquet Sports Recognition Using a Hybrid Clustering Model Learned from Integrated Wearable Sensor.
    Xia K; Wang H; Xu M; Li Z; He S; Tang Y
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Posture and Physical Activity Detection: Impact of Number of Sensors and Feature Type.
    Tang QU; John D; Thapa-Chhetry B; Arguello DJ; Intille S
    Med Sci Sports Exerc; 2020 Aug; 52(8):1834-1845. PubMed ID: 32079910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. D-SORM: A digital solution for remote monitoring based on the attitude of wearable devices.
    Abbas M; Somme D; Le Bouquin Jeannès R
    Comput Methods Programs Biomed; 2021 Sep; 208():106247. PubMed ID: 34260971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Intelligent Non-Invasive Real-Time Human Activity Recognition System for Next-Generation Healthcare.
    Taylor W; Shah SA; Dashtipour K; Zahid A; Abbasi QH; Imran MA
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32384716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classifier-Based Data Transmission Reduction in Wearable Sensor Network for Human Activity Monitoring.
    Lewandowski M; Płaczek B; Bernas M
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.