These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 31861928)

  • 1. iQSP: A Sequence-Based Tool for the Prediction and Analysis of Quorum Sensing Peptides via Chou's 5-Steps Rule and Informative Physicochemical Properties.
    Charoenkwan P; Schaduangrat N; Nantasenamat C; Piacham T; Shoombuatong W
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31861928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational tools for exploring peptide-membrane interactions in gram-positive bacteria.
    Kumar S; Balaya RDA; Kanekar S; Raju R; Prasad TSK; Kandasamy RK
    Comput Struct Biotechnol J; 2023; 21():1995-2008. PubMed ID: 36950221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction and analysis of quorum sensing peptides based on sequence features.
    Rajput A; Gupta AK; Kumar M
    PLoS One; 2015; 10(3):e0120066. PubMed ID: 25781990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PSRQSP: An effective approach for the interpretable prediction of quorum sensing peptide using propensity score representation learning.
    Charoenkwan P; Chumnanpuen P; Schaduangrat N; Oh C; Manavalan B; Shoombuatong W
    Comput Biol Med; 2023 May; 158():106784. PubMed ID: 36989748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction: Shoombuatong, W., et al. iQSP: A Sequence-Based Tool for the Prediction and Analysis of Quorum Sensing Peptides via Chou's 5-Steps Rule and Informative Physicochemical Properties.
    Charoenkwan P; Schaduangrat N; Nantasenamat C; Piacham T; Shoombuatong W
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32290041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis and prediction of quorum-sensing peptides using feature representation learning and machine learning algorithms.
    Wei L; Hu J; Li F; Song J; Su R; Zou Q
    Brief Bioinform; 2020 Jan; 21(1):106-119. PubMed ID: 30383239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Meta-iAVP: A Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation.
    Schaduangrat N; Nantasenamat C; Prachayasittikul V; Shoombuatong W
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31731751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of anti-inflammatory proteins/peptides: an insilico approach.
    Gupta S; Sharma AK; Shastri V; Madhu MK; Sharma VK
    J Transl Med; 2017 Jan; 15(1):7. PubMed ID: 28057002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iBitter-Fuse: A Novel Sequence-Based Bitter Peptide Predictor by Fusing Multi-View Features.
    Charoenkwan P; Nantasenamat C; Hasan MM; Moni MA; Lio' P; Shoombuatong W
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UMPred-FRL: A New Approach for Accurate Prediction of Umami Peptides Using Feature Representation Learning.
    Charoenkwan P; Nantasenamat C; Hasan MM; Moni MA; Manavalan B; Shoombuatong W
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ACPred: A Computational Tool for the Prediction and Analysis of Anticancer Peptides.
    Schaduangrat N; Nantasenamat C; Prachayasittikul V; Shoombuatong W
    Molecules; 2019 May; 24(10):. PubMed ID: 31121946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iBitter-SCM: Identification and characterization of bitter peptides using a scoring card method with propensity scores of dipeptides.
    Charoenkwan P; Yana J; Schaduangrat N; Nantasenamat C; Hasan MM; Shoombuatong W
    Genomics; 2020 Jul; 112(4):2813-2822. PubMed ID: 32234434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pLoc_bal-mVirus: Predict Subcellular Localization of Multi-Label Virus Proteins by Chou's General PseAAC and IHTS Treatment to Balance Training Dataset.
    Xiao X; Cheng X; Chen G; Mao Q; Chou KC
    Med Chem; 2019; 15(5):496-509. PubMed ID: 30556503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational identification of ubiquitylation sites from protein sequences.
    Tung CW; Ho SY
    BMC Bioinformatics; 2008 Jul; 9():310. PubMed ID: 18625080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. THPep: A machine learning-based approach for predicting tumor homing peptides.
    Shoombuatong W; Schaduangrat N; Pratiwi R; Nantasenamat C
    Comput Biol Chem; 2019 Jun; 80():441-451. PubMed ID: 31151025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine-Learning-Based Prediction of Cell-Penetrating Peptides and Their Uptake Efficiency with Improved Accuracy.
    Manavalan B; Subramaniyam S; Shin TH; Kim MO; Lee G
    J Proteome Res; 2018 Aug; 17(8):2715-2726. PubMed ID: 29893128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KELM-CPPpred: Kernel Extreme Learning Machine Based Prediction Model for Cell-Penetrating Peptides.
    Pandey P; Patel V; George NV; Mallajosyula SS
    J Proteome Res; 2018 Sep; 17(9):3214-3222. PubMed ID: 30032609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DPP-PseAAC: A DNA-binding protein prediction model using Chou's general PseAAC.
    Rahman MS; Shatabda S; Saha S; Kaykobad M; Rahman MS
    J Theor Biol; 2018 Sep; 452():22-34. PubMed ID: 29753757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. mACPpred: A Support Vector Machine-Based Meta-Predictor for Identification of Anticancer Peptides.
    Boopathi V; Subramaniyam S; Malik A; Lee G; Manavalan B; Yang DC
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31013619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of immunoglobulins using Chou's pseudo amino acid composition with feature selection technique.
    Tang H; Chen W; Lin H
    Mol Biosyst; 2016 Apr; 12(4):1269-75. PubMed ID: 26883492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.