BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31862066)

  • 1. Environmental fate and behavior of silver nanoparticles in natural estuarine systems.
    Li P; Su M; Wang X; Zou X; Sun X; Shi J; Zhang H
    J Environ Sci (China); 2020 Feb; 88():248-259. PubMed ID: 31862066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters.
    Chinnapongse SL; MacCuspie RI; Hackley VA
    Sci Total Environ; 2011 May; 409(12):2443-50. PubMed ID: 21481439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.
    Zou X; Li P; Lou J; Fu X; Zhang H
    Environ Pollut; 2017 Nov; 230():674-682. PubMed ID: 28715772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems.
    Angel BM; Batley GE; Jarolimek CV; Rogers NJ
    Chemosphere; 2013 Sep; 93(2):359-65. PubMed ID: 23732009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seasonal variability of natural water chemistry affects the fate and behaviour of silver nanoparticles.
    Ellis LA; Baalousha M; Valsami-Jones E; Lead JR
    Chemosphere; 2018 Jan; 191():616-625. PubMed ID: 29073569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability and aggregation of silver and titanium dioxide nanoparticles in seawater: role of salinity and dissolved organic carbon.
    Wang H; Burgess RM; Cantwell MG; Portis LM; Perron MM; Wu F; Ho KT
    Environ Toxicol Chem; 2014 May; 33(5):1023-9. PubMed ID: 24464618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly dynamic PVP-coated silver nanoparticles in aquatic environments: chemical and morphology change induced by oxidation of Ag(0) and reduction of Ag(+).
    Yu SJ; Yin YG; Chao JB; Shen MH; Liu JF
    Environ Sci Technol; 2014; 48(1):403-11. PubMed ID: 24328224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the interaction of microplastic with silver nanoparticles in natural surface water.
    Li P; Liu J; Zhang H
    Sci Total Environ; 2022 Jan; 805():150315. PubMed ID: 34537696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water chemistry controlled aggregation and photo-transformation of silver nanoparticles in environmental waters.
    Yin Y; Yang X; Zhou X; Wang W; Yu S; Liu J; Jiang G
    J Environ Sci (China); 2015 Aug; 34():116-25. PubMed ID: 26257354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silver nanoparticles coated with natural polysaccharides as models to study AgNP aggregation kinetics using UV-Visible spectrophotometry upon discharge in complex environments.
    Lodeiro P; Achterberg EP; PampĂ­n J; Affatati A; El-Shahawi MS
    Sci Total Environ; 2016 Jan; 539():7-16. PubMed ID: 26363390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salinity influences on the uptake of silver nanoparticles and silver nitrate by marine medaka (Oryzias melastigma).
    Wang J; Wang WX
    Environ Toxicol Chem; 2014 Mar; 33(3):632-40. PubMed ID: 24464862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental Fate of Silver Nanoparticles in Boreal Lake Ecosystems.
    Furtado LM; Norman BC; Xenopoulos MA; Frost PC; Metcalfe CD; Hintelmann H
    Environ Sci Technol; 2015 Jul; 49(14):8441-50. PubMed ID: 26061763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estuarine mixing behavior of colloidal organic carbon and colloidal mercury in Galveston Bay, Texas.
    Lee S; Han S; Gill GA
    J Environ Monit; 2011 Jun; 13(6):1703-8. PubMed ID: 21584306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of sulfidation and dissolved organic matters on toxicity of silver nanoparticles in sediment dwelling organism, Chironomus riparius.
    Lee SW; Park SY; Kim Y; Im H; Choi J
    Sci Total Environ; 2016 May; 553():565-573. PubMed ID: 26938319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic-strength-dependent effect of suspended sediment on the aggregation, dissolution and settling of silver nanoparticles.
    Zhao J; Li Y; Wang X; Xia X; Shang E; Ali J
    Environ Pollut; 2021 Jun; 279():116926. PubMed ID: 33751945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver nanoparticle and Ag
    Zou X; Li P; Wang X; Zheng S; Dai F; Zhang H
    Environ Pollut; 2020 Mar; 258():113686. PubMed ID: 31812524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salinity modulates biochemical and histopathological changes caused by silver nanoparticles in juvenile Persian sturgeon (Acipenser persicus).
    Banan A; Kalbassi MR; Bahmani M; Sotoudeh E; Johari SA; Ali JM; Kolok AS
    Environ Sci Pollut Res Int; 2020 Apr; 27(10):10658-10671. PubMed ID: 31939027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity.
    Sharma VK; Siskova KM; Zboril R; Gardea-Torresdey JL
    Adv Colloid Interface Sci; 2014 Feb; 204():15-34. PubMed ID: 24406050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment.
    Ellis LA; Valsami-Jones E; Lead JR; Baalousha M
    Sci Total Environ; 2016 Oct; 568():95-106. PubMed ID: 27289392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments.
    Odzak N; Kistler D; Sigg L
    Environ Pollut; 2017 Jul; 226():1-11. PubMed ID: 28395184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.