BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31862066)

  • 21. The toxicity of coated silver nanoparticles to Daphnia carinata and trophic transfer from alga Raphidocelis subcapitata.
    Lekamge S; Miranda AF; Ball AS; Shukla R; Nugegoda D
    PLoS One; 2019; 14(4):e0214398. PubMed ID: 30943225
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impacts of select organic ligands on the colloidal stability, dissolution dynamics, and toxicity of silver nanoparticles.
    Pokhrel LR; Dubey B; Scheuerman PR
    Environ Sci Technol; 2013 Nov; 47(22):12877-85. PubMed ID: 24144348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanosilver inhibits nitrification and reduces ammonia-oxidising bacterial but not archaeal amoA gene abundance in estuarine sediments.
    Beddow J; Stolpe B; Cole PA; Lead JR; Sapp M; Lyons BP; Colbeck I; Whitby C
    Environ Microbiol; 2017 Feb; 19(2):500-510. PubMed ID: 27376348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry.
    Yang Y; Long CL; Li HP; Wang Q; Yang ZG
    Sci Total Environ; 2016 Sep; 563-564():996-1007. PubMed ID: 26895948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of natural water conditions on the anti-bacterial performance and stability of silver nanoparticles capped with different polymers.
    Zhang H; Smith JA; Oyanedel-Craver V
    Water Res; 2012 Mar; 46(3):691-9. PubMed ID: 22169660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli.
    Levard C; Mitra S; Yang T; Jew AD; Badireddy AR; Lowry GV; Brown GE
    Environ Sci Technol; 2013 Jun; 47(11):5738-45. PubMed ID: 23641814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Morphological evolution and reconstruction of silver nanoparticles in aquatic environments: the roles of natural organic matter and light irradiation.
    Zou X; Shi J; Zhang H
    J Hazard Mater; 2015 Jul; 292():61-9. PubMed ID: 25795274
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Protein Corona on Silver Nanoparticle Stabilization and Ion Release Kinetics in Artificial Seawater.
    Levak M; Burić P; Dutour Sikirić M; Domazet Jurašin D; Mikac N; Bačić N; Drexel R; Meier F; Jakšić Ž; Lyons DM
    Environ Sci Technol; 2017 Feb; 51(3):1259-1266. PubMed ID: 28075572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Silver nanoparticles in natural water environment: Source, analysis and transformation].
    Yang YS; Wang C; Yuan XM; An CW; Yang XY
    Ying Yong Sheng Tai Xue Bao; 2017 Jun; 28(6):2073-2082. PubMed ID: 29745173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel insights into the multistep chlorination of silver nanoparticles in aquatic environments.
    Yang Y; Zhang N; You Q; Chen X; Zhang Y; Zhu L
    Water Res; 2023 Jul; 240():120111. PubMed ID: 37263118
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monitoring the Fate and Transformation of Silver Nanoparticles in Natural Waters.
    Furtado LM; Bundschuh M; Metcalfe CD
    Bull Environ Contam Toxicol; 2016 Oct; 97(4):449-55. PubMed ID: 27437947
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A field-deployable surface-enhanced Raman scattering (SERS) method for sensitive analysis of silver nanoparticles in environmental waters.
    Guo H; Hamlet LC; He L; Xing B
    Sci Total Environ; 2019 Feb; 653():1034-1041. PubMed ID: 30759544
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transformation of AgCl Particles under Conditions Typical of Natural Waters: Implications for Oxidant Generation.
    Rong H; Garg S; Waite TD
    Environ Sci Technol; 2018 Oct; 52(20):11621-11631. PubMed ID: 30227709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Natural marine bacteria as model organisms for the hazard-assessment of consumer products containing silver nanoparticles.
    Echavarri-Bravo V; Paterson L; Aspray TJ; Porter JS; Winson MK; Hartl MGJ
    Mar Environ Res; 2017 Sep; 130():293-302. PubMed ID: 28867133
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlled evaluation of silver nanoparticle dissolution using atomic force microscopy.
    Kent RD; Vikesland PJ
    Environ Sci Technol; 2012 Jul; 46(13):6977-84. PubMed ID: 22191460
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of salinity on the toxicity of silver nanoparticles (AgNPs) and silver nitrate (AgNO
    Johari SA; Sarkheil M; Behzadi Tayemeh M; Veisi S
    Chemosphere; 2018 Oct; 209():156-162. PubMed ID: 29929121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distinct toxicity of silver nanoparticles and silver nitrate to Daphnia magna in M4 medium and surface water.
    Hu Y; Chen X; Yang K; Lin D
    Sci Total Environ; 2018 Mar; 618():838-846. PubMed ID: 29054648
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sunlight-driven reduction of silver ion to silver nanoparticle by organic matter mitigates the acute toxicity of silver to Daphnia magna.
    Zhang Z; Yang X; Shen M; Yin Y; Liu J
    J Environ Sci (China); 2015 Sep; 35():62-68. PubMed ID: 26354693
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Microbial bioavailability of dissolved nucleic acids across the estuarine salinity gradient].
    Yang QQ; Li PH; Huang QH
    Huan Jing Ke Xue; 2013 Jul; 34(7):2597-602. PubMed ID: 24027988
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests.
    Römer I; White TA; Baalousha M; Chipman K; Viant MR; Lead JR
    J Chromatogr A; 2011 Jul; 1218(27):4226-33. PubMed ID: 21529813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.