BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31862242)

  • 1. Wild antelope skeletal muscle antioxidant enzyme activities do not correlate with muscle fibre type or oxidative metabolism.
    Hohl R; Blackhurst DM; Donaldson B; van Boom KM; Kohn TA
    Comp Biochem Physiol A Mol Integr Physiol; 2020 Apr; 242():110638. PubMed ID: 31862242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the skeletal muscle characteristics of three southern African antelope species.
    Kohn TA
    Biol Open; 2014 Oct; 3(11):1037-44. PubMed ID: 25326514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High oxidative capacity and type IIx fibre content in springbok and fallow deer skeletal muscle suggest fast sprinters with a resistance to fatigue.
    Curry JW; Hohl R; Noakes TD; Kohn TA
    J Exp Biol; 2012 Nov; 215(Pt 22):3997-4005. PubMed ID: 22899533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Black wildebeest skeletal muscle exhibits high oxidative capacity and a high proportion of type IIx fibres.
    Kohn TA; Curry JW; Noakes TD
    J Exp Biol; 2011 Dec; 214(Pt 23):4041-7. PubMed ID: 22071196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fiber type and metabolic characteristics of lion (Panthera leo), caracal (Caracal caracal) and human skeletal muscle.
    Kohn TA; Burroughs R; Hartman MJ; Noakes TD
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Jun; 159(2):125-33. PubMed ID: 21320626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme activities in the tibialis anterior muscle of young moderately active men and women: relationship with body composition, muscle cross-sectional area and fibre type composition.
    Jaworowski A; Porter MM; Holmbäck AM; Downham D; Lexell J
    Acta Physiol Scand; 2002 Nov; 176(3):215-25. PubMed ID: 12392501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme adaptations of human skeletal muscle during bicycle short-sprint training and detraining.
    Linossier MT; Dormois D; Perier C; Frey J; Geyssant A; Denis C
    Acta Physiol Scand; 1997 Dec; 161(4):439-45. PubMed ID: 9429650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fiber type and metabolic characteristics of skeletal muscle in 16 breeds of domestic dogs.
    van Boom KM; Schoeman JP; Steyl JCA; Kohn TA
    Anat Rec (Hoboken); 2023 Oct; 306(10):2572-2586. PubMed ID: 36932662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle fiber type and metabolic profiles of four muscles from the African black ostrich.
    Kohn TA; Anley MJ; Magwaza SN; Adamson L; Hoffman LC; Brand TS
    Meat Sci; 2023 Jun; 200():109156. PubMed ID: 36898231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of metabolic profiles on single muscle fibres of different types.
    Takekura H; Yoshioka T
    J Muscle Res Cell Motil; 1987 Aug; 8(4):342-8. PubMed ID: 2958499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activities of key enzymes in the energy metabolism of human myocardial and skeletal muscle.
    Jansson E; Sylvén C
    Clin Physiol; 1986 Oct; 6(5):465-71. PubMed ID: 2946512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of heart transplantation on skeletal muscle metabolic enzyme reserve and fiber type in end-stage heart failure patients.
    Pierce GL; Magyari PM; Aranda JM; Edwards DG; Hamlin SA; Hill JA; Braith RW
    Clin Transplant; 2007; 21(1):94-100. PubMed ID: 17302597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alteration of antioxidant enzymes with aging in rat skeletal muscle and liver.
    Ji LL; Dillon D; Wu E
    Am J Physiol; 1990 Apr; 258(4 Pt 2):R918-23. PubMed ID: 2331035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of leptin reduces the ratio of glycolytic to oxidative enzymatic activities without changing muscle fiber types in mouse skeletal muscle.
    Masuda S; Tanaka T; Masuzaki H; Nakao K; Taguchi S
    Biol Pharm Bull; 2014; 37(1):169-73. PubMed ID: 24389492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme levels in pools of microdissected human muscle fibres of identified type. Adaptive response to exercise.
    Essén-Gustavsson B; Henriksson J
    Acta Physiol Scand; 1984 Apr; 120(4):505-15. PubMed ID: 6237550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations in diaphragmatic oxidative and antioxidant enzymes in the senescent Fischer 344 rat.
    Powers SK; Lawler J; Criswell D; Lieu FK; Dodd S
    J Appl Physiol (1985); 1992 Jun; 72(6):2317-21. PubMed ID: 1629087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myosin heavy chain composition of different skeletal muscles in Large White and Meishan pigs.
    Lefaucheur L; Milan D; Ecolan P; Le Callennec C
    J Anim Sci; 2004 Jul; 82(7):1931-41. PubMed ID: 15309939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations of superoxide dismutase iso-enzyme activity, content, and mRNA expression with aging in rat skeletal muscle.
    Oh-Ishi S; Kizaki T; Yamashita H; Nagata N; Suzuki K; Taniguchi N; Ohno H
    Mech Ageing Dev; 1995 Sep; 84(1):65-76. PubMed ID: 8719778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme activities in type I and II muscle fibres of human skeletal muscle in relation to age and torque development.
    Borges O; Essén-Gustavsson B
    Acta Physiol Scand; 1989 May; 136(1):29-36. PubMed ID: 2773660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the lactate transporter (MCT1) in skeletal muscles.
    McCullagh KJ; Poole RC; Halestrap AP; O'Brien M; Bonen A
    Am J Physiol; 1996 Jul; 271(1 Pt 1):E143-50. PubMed ID: 8760092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.