These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives. Goswami L; Kushwaha A; Napathorn SC; Kim BS Int J Biol Macromol; 2023 Aug; 247():125743. PubMed ID: 37423435 [TBL] [Abstract][Full Text] [Related]
3. A review on recovery of proteins from industrial wastewaters with special emphasis on PHA production process: Sustainable circular bioeconomy process development. Yadav B; Chavan S; Atmakuri A; Tyagi RD; Drogui P Bioresour Technol; 2020 Dec; 317():124006. PubMed ID: 32889176 [TBL] [Abstract][Full Text] [Related]
4. A review on production of polyhydroxyalkanoate (PHA) biopolyesters by thermophilic microbes using waste feedstocks. Chavan S; Yadav B; Tyagi RD; Drogui P Bioresour Technol; 2021 Dec; 341():125900. PubMed ID: 34523565 [TBL] [Abstract][Full Text] [Related]
5. Development of polyhydroxyalkanoates production from waste feedstocks and applications. Pakalapati H; Chang CK; Show PL; Arumugasamy SK; Lan JC J Biosci Bioeng; 2018 Sep; 126(3):282-292. PubMed ID: 29803402 [TBL] [Abstract][Full Text] [Related]
6. Production and recovery of polyhydroxyalkanoates (PHA) from waste streams - A review. Yukesh Kannah R; Dinesh Kumar M; Kavitha S; Rajesh Banu J; Kumar Tyagi V; Rajaguru P; Kumar G Bioresour Technol; 2022 Dec; 366():128203. PubMed ID: 36330969 [TBL] [Abstract][Full Text] [Related]
7. Polyhydroxyalkanoate (PHA) production via resource recovery from industrial waste streams: A review of techniques and perspectives. De Donno Novelli L; Moreno Sayavedra S; Rene ER Bioresour Technol; 2021 Jul; 331():124985. PubMed ID: 33819906 [TBL] [Abstract][Full Text] [Related]
8. Polyhydroxyalkanoates (PHA) production from biogas in waste treatment facilities: Assessing the potential impacts on economy, environment and society. Pérez V; Mota CR; Muñoz R; Lebrero R Chemosphere; 2020 Sep; 255():126929. PubMed ID: 32402877 [TBL] [Abstract][Full Text] [Related]
9. Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production? Khatami K; Perez-Zabaleta M; Owusu-Agyeman I; Cetecioglu Z Waste Manag; 2021 Jan; 119():374-388. PubMed ID: 33139190 [TBL] [Abstract][Full Text] [Related]
10. Production of polyhydroxyalkanoates from renewable resources: a review on prospects, challenges and applications. Mahato RP; Kumar S; Singh P Arch Microbiol; 2023 Apr; 205(5):172. PubMed ID: 37017747 [TBL] [Abstract][Full Text] [Related]
11. Polyhydroxyalkanoates production in biorefineries: A review on current status, challenges and opportunities. de Mello AFM; Vandenberghe LPS; Machado CMB; Brehmer MS; de Oliveira PZ; Binod P; Sindhu R; Soccol CR Bioresour Technol; 2024 Feb; 393():130078. PubMed ID: 37993072 [TBL] [Abstract][Full Text] [Related]
12. Bio-conversion of organic wastes towards polyhydroxyalkanoates. Kuang ZY; Yang H; Shen SW; Lin YN; Sun SW; Neureiter M; Yue HT; Ye JW Biotechnol Notes; 2023; 4():118-126. PubMed ID: 39416913 [TBL] [Abstract][Full Text] [Related]
13. A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. Ganesh Saratale R; Cho SK; Dattatraya Saratale G; Kadam AA; Ghodake GS; Kumar M; Naresh Bharagava R; Kumar G; Su Kim D; Mulla SI; Seung Shin H Bioresour Technol; 2021 Apr; 325():124685. PubMed ID: 33508681 [TBL] [Abstract][Full Text] [Related]
14. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria. Nikodinovic-Runic J; Guzik M; Kenny ST; Babu R; Werker A; O Connor KE Adv Appl Microbiol; 2013; 84():139-200. PubMed ID: 23763760 [TBL] [Abstract][Full Text] [Related]
15. Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling. Amulya K; Jukuri S; Venkata Mohan S Bioresour Technol; 2015; 188():231-9. PubMed ID: 25682477 [TBL] [Abstract][Full Text] [Related]
16. Optimization of an enriched mixed culture to increase PHA accumulation using industrial saline complex wastewater as a substrate. Argiz L; Fra-Vázquez A; Del Río ÁV; Mosquera-Corral A Chemosphere; 2020 May; 247():125873. PubMed ID: 31972488 [TBL] [Abstract][Full Text] [Related]
17. Recovery of polyhydroxyalkanoates (PHAs) from wastewater: A review. Mannina G; Presti D; Montiel-Jarillo G; Carrera J; Suárez-Ojeda ME Bioresour Technol; 2020 Feb; 297():122478. PubMed ID: 31810735 [TBL] [Abstract][Full Text] [Related]
18. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. Koller M; Maršálek L; de Sousa Dias MM; Braunegg G N Biotechnol; 2017 Jul; 37(Pt A):24-38. PubMed ID: 27184617 [TBL] [Abstract][Full Text] [Related]
19. Challenges of scaling-up PHA production from waste streams. A review. Rodriguez-Perez S; Serrano A; Pantión AA; Alonso-Fariñas B J Environ Manage; 2018 Jan; 205():215-230. PubMed ID: 28987985 [TBL] [Abstract][Full Text] [Related]
20. Potential of waste activated sludge to accumulate polyhydroxyalkanoates and glycogen using industrial wastewater/liquid wastes as substrates. Ike M; Okada Y; Narui T; Sakai K; Kuroda M; Soda S; Inoue D Water Sci Technol; 2019 Dec; 80(12):2373-2380. PubMed ID: 32245929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]