BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 31862471)

  • 1. Mitochondrial glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase abrogate p53 induced apoptosis in a yeast model: Possible implications for apoptosis resistance in cancer cells.
    Redhu AK; Bhat JP
    Biochim Biophys Acta Gen Subj; 2020 Mar; 1864(3):129504. PubMed ID: 31862471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae.
    Nguyen TT; Kitajima S; Izawa S
    J Biosci Bioeng; 2014 Sep; 118(3):263-9. PubMed ID: 24725964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6.
    Papapetridis I; van Dijk M; Dobbe AP; Metz B; Pronk JT; van Maris AJ
    Microb Cell Fact; 2016 Apr; 15():67. PubMed ID: 27118055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fermentative metabolism impedes p53-dependent apoptosis in a Crabtree-positive but not in Crabtree-negative yeast.
    Kumar A; Dandekar JU; Bhat PJ
    J Biosci; 2017 Dec; 42(4):585-601. PubMed ID: 29229877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implications of differential peroxyl radical-induced inactivation of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase for the pentose phosphate pathway.
    Reyes JS; Fuentes-Lemus E; Figueroa JD; Rojas J; Fierro A; Arenas F; Hägglund PM; Davies MJ; López-Alarcón C
    Sci Rep; 2022 Dec; 12(1):21191. PubMed ID: 36476946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans.
    Tonouchi N; Sugiyama M; Yokozeki K
    Biosci Biotechnol Biochem; 2003 Dec; 67(12):2648-51. PubMed ID: 14730146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of xylitol production in Candida tropicalis by co-expression of two genes involved in pentose phosphate pathway.
    Ahmad I; Shim WY; Jeon WY; Yoon BH; Kim JH
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):199-204. PubMed ID: 21969058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase isoform genes in suspension-cultured Arabidopsis thaliana cells.
    Yin Y; Ashihara H
    Z Naturforsch C J Biosci; 2008; 63(9-10):713-20. PubMed ID: 19040112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative studies on the glycolytic and hexose monophosphate pathways in Candida parapsilosis and Saccharomyces cerevisiae.
    Caubet R; Guerin B; Guerin M
    Arch Microbiol; 1988; 149(4):324-9. PubMed ID: 2833196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dehydrogenase-mediated recycling system of NADPH in plant peroxisomes.
    Corpas FJ; Barroso JB; Sandalio LM; Distefano S; Palma JM; Lupiáñez JA; Del Río LA
    Biochem J; 1998 Mar; 330 ( Pt 2)(Pt 2):777-84. PubMed ID: 9480890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordinate regulation of the pentose phosphate pathway and of the activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase (decarboxylating).
    Pascual C; Herrera LS
    Folia Microbiol (Praha); 1982; 27(6):365-9. PubMed ID: 6757069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADPH is important for isobutanol tolerance in a minimal medium of Saccharomyces cerevisiae.
    Yoshikawa Y; Nasuno R; Takagi H
    Biosci Biotechnol Biochem; 2021 Aug; 85(9):2084-2088. PubMed ID: 34169967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose 6-phosphate and alcohol dehydrogenase activities are components of dynamic macromolecular depots structures.
    Tramonti A; Saliola M
    Biochim Biophys Acta; 2015 Jun; 1850(6):1120-30. PubMed ID: 25662817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress responses in alfalfa (Medicago sativa L.) XIX. Transcriptional activation of oxidative pentose phosphate pathway genes at the onset of the isoflavonoid phytoalexin response.
    Fahrendorf T; Ni W; Shorrosh BS; Dixon RA
    Plant Mol Biol; 1995 Aug; 28(5):885-900. PubMed ID: 7640360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose regulates enzymatic sources of mitochondrial NADPH in skeletal muscle cells; a novel role for glucose-6-phosphate dehydrogenase.
    Mailloux RJ; Harper ME
    FASEB J; 2010 Jul; 24(7):2495-506. PubMed ID: 20228249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dehydrogenases of the pentose phosphate pathway in rat liver peroxisomes.
    Antonenkov VD
    Eur J Biochem; 1989 Jul; 183(1):75-82. PubMed ID: 2753047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma.
    Lucarelli G; Galleggiante V; Rutigliano M; Sanguedolce F; Cagiano S; Bufo P; Lastilla G; Maiorano E; Ribatti D; Giglio A; Serino G; Vavallo A; Bettocchi C; Selvaggi FP; Battaglia M; Ditonno P
    Oncotarget; 2015 May; 6(15):13371-86. PubMed ID: 25945836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 6-phosphogluconate dehydrogenase, glucose-6-phosphate dehydrogenase, glucose-6-phosphate isomerase, and hexokinase activity ratios in some human tumor cytosols.
    Miranda M; Ventura T; Iorio L; Ragnelli AM; Martano C; Di Vito L
    Tumori; 1978; 64(6):579-86. PubMed ID: 741521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycolytic cancer cells lacking 6-phosphogluconate dehydrogenase metabolize glucose to induce senescence.
    Sukhatme VP; Chan B
    FEBS Lett; 2012 Jul; 586(16):2389-95. PubMed ID: 22677172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of Pentose Phosphate Pathway-Related Proteins in Breast Cancer.
    Choi J; Kim ES; Koo JS
    Dis Markers; 2018; 2018():9369358. PubMed ID: 29682102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.