These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 31862780)
1. Reactive Oxygen Species Drive Proliferation in Acute Myeloid Leukemia via the Glycolytic Regulator PFKFB3. Robinson AJ; Hopkins GL; Rastogi N; Hodges M; Doyle M; Davies S; Hole PS; Omidvar N; Darley RL; Tonks A Cancer Res; 2020 Mar; 80(5):937-949. PubMed ID: 31862780 [TBL] [Abstract][Full Text] [Related]
2. TRAF7 inhibits glycolysis to potentiate growth inhibition and apoptosis of myeloid leukemia cells via regulating the KLF2-PFKFB3 axis. Zou L; Fang Y; He W Mol Cell Probes; 2023 Jun; 69():101911. PubMed ID: 37003349 [TBL] [Abstract][Full Text] [Related]
3. Increased 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 activity in response to EGFR signaling contributes to non-small cell lung cancer cell survival. Lypova N; Telang S; Chesney J; Imbert-Fernandez Y J Biol Chem; 2019 Jul; 294(27):10530-10543. PubMed ID: 31126985 [TBL] [Abstract][Full Text] [Related]
4. PFKFB3-mediated glycolysis is involved in reactive astrocyte proliferation after oxygen-glucose deprivation/reperfusion and is regulated by Cdh1. Lv Y; Zhang B; Zhai C; Qiu J; Zhang Y; Yao W; Zhang C Neurochem Int; 2015 Dec; 91():26-33. PubMed ID: 26498254 [TBL] [Abstract][Full Text] [Related]
5. mTOR up-regulation of PFKFB3 is essential for acute myeloid leukemia cell survival. Feng Y; Wu L Biochem Biophys Res Commun; 2017 Feb; 483(2):897-903. PubMed ID: 28082200 [TBL] [Abstract][Full Text] [Related]
6. TIGAR cooperated with glycolysis to inhibit the apoptosis of leukemia cells and associated with poor prognosis in patients with cytogenetically normal acute myeloid leukemia. Qian S; Li J; Hong M; Zhu Y; Zhao H; Xie Y; Huang J; Lian Y; Li Y; Wang S; Mao J; Chen Y J Hematol Oncol; 2016 Nov; 9(1):128. PubMed ID: 27884166 [TBL] [Abstract][Full Text] [Related]
7. Overexpression of PFKFB3 promotes cell glycolysis and proliferation in renal cell carcinoma. Li J; Zhang S; Liao D; Zhang Q; Chen C; Yang X; Jiang D; Pang J BMC Cancer; 2022 Jan; 22(1):83. PubMed ID: 35057732 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of 6-phosphofructo-2-kinase (PFKFB3) suppresses glucose metabolism and the growth of HER2+ breast cancer. O'Neal J; Clem A; Reynolds L; Dougherty S; Imbert-Fernandez Y; Telang S; Chesney J; Clem BF Breast Cancer Res Treat; 2016 Nov; 160(1):29-40. PubMed ID: 27613609 [TBL] [Abstract][Full Text] [Related]
9. CPEB4 Increases Expression of PFKFB3 to Induce Glycolysis and Activate Mouse and Human Hepatic Stellate Cells, Promoting Liver Fibrosis. Mejias M; Gallego J; Naranjo-Suarez S; Ramirez M; Pell N; Manzano A; Suñer C; Bartrons R; Mendez R; Fernandez M Gastroenterology; 2020 Jul; 159(1):273-288. PubMed ID: 32169429 [TBL] [Abstract][Full Text] [Related]
10. Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Bando H; Atsumi T; Nishio T; Niwa H; Mishima S; Shimizu C; Yoshioka N; Bucala R; Koike T Clin Cancer Res; 2005 Aug; 11(16):5784-92. PubMed ID: 16115917 [TBL] [Abstract][Full Text] [Related]
12. PFKFB3 regulates oxidative stress homeostasis via its S-glutathionylation in cancer. Seo M; Lee YH J Mol Biol; 2014 Feb; 426(4):830-42. PubMed ID: 24295899 [TBL] [Abstract][Full Text] [Related]
13. Blockage of glycolysis by targeting PFKFB3 suppresses the development of infantile hemangioma. Yang K; Qiu T; Zhou J; Gong X; Zhang X; Lan Y; Zhang Z; Ji Y J Transl Med; 2023 Feb; 21(1):85. PubMed ID: 36740704 [TBL] [Abstract][Full Text] [Related]
14. 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 and 4: A pair of valves for fine-tuning of glucose metabolism in human cancer. Yi M; Ban Y; Tan Y; Xiong W; Li G; Xiang B Mol Metab; 2019 Feb; 20():1-13. PubMed ID: 30553771 [TBL] [Abstract][Full Text] [Related]
15. The JAK2V617F oncogene requires expression of inducible phosphofructokinase/fructose-bisphosphatase 3 for cell growth and increased metabolic activity. Reddy MM; Fernandes MS; Deshpande A; Weisberg E; Inguilizian HV; Abdel-Wahab O; Kung AL; Levine RL; Griffin JD; Sattler M Leukemia; 2012 Mar; 26(3):481-9. PubMed ID: 21860432 [TBL] [Abstract][Full Text] [Related]
16. Iron Oxide Nanoparticles Combined with Cytosine Arabinoside Show Anti-Leukemia Stem Cell Effects on Acute Myeloid Leukemia by Regulating Reactive Oxygen Species. Dou J; Li L; Guo M; Mei F; Zheng D; Xu H; Xue R; Bao X; Zhao F; Zhang Y Int J Nanomedicine; 2021; 16():1231-1244. PubMed ID: 33633448 [TBL] [Abstract][Full Text] [Related]
17. Nuances of PFKFB3 Signaling in Breast Cancer. Galindo CM; Oliveira Ganzella FA; Klassen G; Souza Ramos EA; Acco A Clin Breast Cancer; 2022 Jun; 22(4):e604-e614. PubMed ID: 35135735 [TBL] [Abstract][Full Text] [Related]
18. Blockage of glycolysis by targeting PFKFB3 suppresses tumor growth and metastasis in head and neck squamous cell carcinoma. Li HM; Yang JG; Liu ZJ; Wang WM; Yu ZL; Ren JG; Chen G; Zhang W; Jia J J Exp Clin Cancer Res; 2017 Jan; 36(1):7. PubMed ID: 28061878 [TBL] [Abstract][Full Text] [Related]
19. TGF-β1 targets Smad, p38 MAPK, and PI3K/Akt signaling pathways to induce PFKFB3 gene expression and glycolysis in glioblastoma cells. Rodríguez-García A; Samsó P; Fontova P; Simon-Molas H; Manzano A; Castaño E; Rosa JL; Martinez-Outshoorn U; Ventura F; Navarro-Sabaté À; Bartrons R FEBS J; 2017 Oct; 284(20):3437-3454. PubMed ID: 28834297 [TBL] [Abstract][Full Text] [Related]
20. Metformin attenuates hepatoma cell proliferation by decreasing glycolytic flux through the HIF-1α/PFKFB3/PFK1 pathway. Hu L; Zeng Z; Xia Q; Liu Z; Feng X; Chen J; Huang M; Chen L; Fang Z; Liu Q; Zeng H; Zhou X; Liu J Life Sci; 2019 Dec; 239():116966. PubMed ID: 31626790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]