These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

721 related articles for article (PubMed ID: 31862977)

  • 1. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation.
    Haruwaka K; Ikegami A; Tachibana Y; Ohno N; Konishi H; Hashimoto A; Matsumoto M; Kato D; Ono R; Kiyama H; Moorhouse AJ; Nabekura J; Wake H
    Nat Commun; 2019 Dec; 10(1):5816. PubMed ID: 31862977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray irradiation induces disruption of the blood-brain barrier with localized changes in claudin-5 and activation of microglia in the mouse brain.
    Yoshida Y; Sejimo Y; Kurachi M; Ishizaki Y; Nakano T; Takahashi A
    Neurochem Int; 2018 Oct; 119():199-206. PubMed ID: 29545059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C5a alters blood-brain barrier integrity in a human in vitro model of systemic lupus erythematosus.
    Mahajan SD; Parikh NU; Woodruff TM; Jarvis JN; Lopez M; Hennon T; Cunningham P; Quigg RJ; Schwartz SA; Alexander JJ
    Immunology; 2015 Sep; 146(1):130-43. PubMed ID: 26059553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Claudin-5a is essential for the functional formation of both zebrafish blood-brain barrier and blood-cerebrospinal fluid barrier.
    Li Y; Wang C; Zhang L; Chen B; Mo Y; Zhang J
    Fluids Barriers CNS; 2022 Jun; 19(1):40. PubMed ID: 35658877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesenchymal stem cells stabilize the blood-brain barrier through regulation of astrocytes.
    Park HJ; Shin JY; Kim HN; Oh SH; Song SK; Lee PH
    Stem Cell Res Ther; 2015 Sep; 6():187. PubMed ID: 26420371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentiating a non-neuronal cardiac cholinergic system reinforces the functional integrity of the blood brain barrier associated with systemic anti-inflammatory responses.
    Oikawa S; Kai Y; Mano A; Sugama S; Mizoguchi N; Tsuda M; Muramoto K; Kakinuma Y
    Brain Behav Immun; 2019 Oct; 81():122-137. PubMed ID: 31176726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monocyte chemoattractant protein-1 and the blood-brain barrier.
    Yao Y; Tsirka SE
    Cell Mol Life Sci; 2014 Feb; 71(4):683-97. PubMed ID: 24051980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microvascular endothelial cells-derived microvesicles imply in ischemic stroke by modulating astrocyte and blood brain barrier function and cerebral blood flow.
    Pan Q; He C; Liu H; Liao X; Dai B; Chen Y; Yang Y; Zhao B; Bihl J; Ma X
    Mol Brain; 2016 Jun; 9(1):63. PubMed ID: 27267759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The CLDN5 gene at the blood-brain barrier in health and disease.
    Hashimoto Y; Greene C; Munnich A; Campbell M
    Fluids Barriers CNS; 2023 Mar; 20(1):22. PubMed ID: 36978081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic depletion of gonadal testosterone leads to blood-brain barrier dysfunction and inflammation in male mice.
    Atallah A; Mhaouty-Kodja S; Grange-Messent V
    J Cereb Blood Flow Metab; 2017 Sep; 37(9):3161-3175. PubMed ID: 28256950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit.
    Banks WA; Gray AM; Erickson MA; Salameh TS; Damodarasamy M; Sheibani N; Meabon JS; Wing EE; Morofuji Y; Cook DG; Reed MJ
    J Neuroinflammation; 2015 Nov; 12():223. PubMed ID: 26608623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GDF15 promotes simultaneous astrocyte remodeling and tight junction strengthening at the blood-brain barrier.
    Malik VA; Zajicek F; Mittmann LA; Klaus J; Unterseer S; Rajkumar S; Pütz B; Deussing JM; Neumann ID; Rupprecht R; Di Benedetto B
    J Neurosci Res; 2020 Jul; 98(7):1433-1456. PubMed ID: 32170776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood-brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents.
    Cho CF; Wolfe JM; Fadzen CM; Calligaris D; Hornburg K; Chiocca EA; Agar NYR; Pentelute BL; Lawler SE
    Nat Commun; 2017 Jun; 8():15623. PubMed ID: 28585535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascular Cell Senescence Contributes to Blood-Brain Barrier Breakdown.
    Yamazaki Y; Baker DJ; Tachibana M; Liu CC; van Deursen JM; Brott TG; Bu G; Kanekiyo T
    Stroke; 2016 Apr; 47(4):1068-77. PubMed ID: 26883501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pituicyte Cues Regulate the Development of Permeable Neuro-Vascular Interfaces.
    Anbalagan S; Gordon L; Blechman J; Matsuoka RL; Rajamannar P; Wircer E; Biran J; Reuveny A; Leshkowitz D; Stainier DYR; Levkowitz G
    Dev Cell; 2018 Dec; 47(6):711-726.e5. PubMed ID: 30449506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Levetiracetam treatment influences blood-brain barrier failure associated with angiogenesis and inflammatory responses in the acute phase of epileptogenesis in post-status epilepticus mice.
    Itoh K; Ishihara Y; Komori R; Nochi H; Taniguchi R; Chiba Y; Ueno M; Takata-Tsuji F; Dohgu S; Kataoka Y
    Brain Res; 2016 Dec; 1652():1-13. PubMed ID: 27693413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations of Fc gamma receptor I and Toll-like receptor 4 mediate the antiinflammatory actions of microglia and astrocytes after adrenaline-induced blood-brain barrier opening in rats.
    Li YN; Qin XJ; Kuang F; Wu R; Duan XL; Ju G; Wang BR
    J Neurosci Res; 2008 Dec; 86(16):3556-65. PubMed ID: 18756515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connexin 43 gap junctions contribute to brain endothelial barrier hyperpermeability in familial cerebral cavernous malformations type III by modulating tight junction structure.
    Johnson AM; Roach JP; Hu A; Stamatovic SM; Zochowski MR; Keep RF; Andjelkovic AV
    FASEB J; 2018 May; 32(5):2615-2629. PubMed ID: 29295866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RhoA/ROCK-2 Pathway Inhibition and Tight Junction Protein Upregulation by Catalpol Suppresses Lipopolysaccaride-Induced Disruption of Blood-Brain Barrier Permeability.
    Feng S; Zou L; Wang H; He R; Liu K; Zhu H
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30227623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes.
    Nakagawa S; Deli MA; Kawaguchi H; Shimizudani T; Shimono T; Kittel A; Tanaka K; Niwa M
    Neurochem Int; 2009; 54(3-4):253-63. PubMed ID: 19111869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.