These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 31863077)
1. Sequential phosphoproteomics and N-glycoproteomics of plasma-derived extracellular vesicles. Andaluz Aguilar H; Iliuk AB; Chen IH; Tao WA Nat Protoc; 2020 Jan; 15(1):161-180. PubMed ID: 31863077 [TBL] [Abstract][Full Text] [Related]
2. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Chen IH; Xue L; Hsu CC; Paez JS; Pan L; Andaluz H; Wendt MK; Iliuk AB; Zhu JK; Tao WA Proc Natl Acad Sci U S A; 2017 Mar; 114(12):3175-3180. PubMed ID: 28270605 [TBL] [Abstract][Full Text] [Related]
3. Chemical Affinity-Based Isolation of Extracellular Vesicles from Biofluids for Proteomics and Phosphoproteomics Analysis. Liu YK; Luo Z; Iliuk A; Tao WA J Vis Exp; 2023 Oct; (200):. PubMed ID: 37955372 [TBL] [Abstract][Full Text] [Related]
4. Integrated proteomic, phosphoproteomic, and N-glycoproteomic analyses of small extracellular vesicles from C2C12 myoblasts identify specific PTM patterns in ligand-receptor interactions. Chen X; Song X; Li J; Wang J; Yan Y; Yang F Cell Commun Signal; 2024 May; 22(1):273. PubMed ID: 38755675 [TBL] [Abstract][Full Text] [Related]
5. TIMAHAC: Streamlined Tandem IMAC-HILIC Workflow for Simultaneous and High-Throughput Plant Phosphoproteomics and N-glycoproteomics. Chen CW; Lin PY; Lai YM; Lin MH; Lin SY; Hsu CC Mol Cell Proteomics; 2024 May; 23(5):100762. PubMed ID: 38608839 [TBL] [Abstract][Full Text] [Related]
6. Comprehensive review of MS-based studies on N-glycoproteome and N-glycome of extracellular vesicles. Li Y; Wang J; Chen W; Lu H; Zhang Y Proteomics; 2024 Jun; 24(11):e2300065. PubMed ID: 37474487 [TBL] [Abstract][Full Text] [Related]
7. Proteomics, Phosphoproteomics and Mirna Analysis of Circulating Extracellular Vesicles through Automated and High-Throughput Isolation. Zhang H; Cai YH; Ding Y; Zhang G; Liu Y; Sun J; Yang Y; Zhan Z; Iliuk A; Gu Z; Gu Y; Tao WA Cells; 2022 Jun; 11(13):. PubMed ID: 35805153 [TBL] [Abstract][Full Text] [Related]
8. Plasma-Derived Extracellular Vesicle Phosphoproteomics through Chemical Affinity Purification. Iliuk A; Wu X; Li L; Sun J; Hadisurya M; Boris RS; Tao WA J Proteome Res; 2020 Jul; 19(7):2563-2574. PubMed ID: 32396726 [TBL] [Abstract][Full Text] [Related]
10. Profiling Phosphoproteome Landscape in Circulating Extracellular Vesicles from Microliters of Biofluids through Functionally Tunable Paramagnetic Separation. Sun J; Li Q; Ding Y; Wei D; Hadisurya M; Luo Z; Gu Z; Chen B; Tao WA Angew Chem Int Ed Engl; 2023 Jul; 62(29):e202305668. PubMed ID: 37216424 [TBL] [Abstract][Full Text] [Related]
11. A Spin-Tip Enrichment Strategy for Simultaneous Analysis of N-Glycopeptides and Phosphopeptides from Human Pancreatic Tissues. Tabang DN; Wang D; Li L J Vis Exp; 2022 May; (183):. PubMed ID: 35604151 [TBL] [Abstract][Full Text] [Related]
12. A Comprehensive, Open-source Platform for Mass Spectrometry-based Glycoproteomics Data Analysis. Liu G; Cheng K; Lo CY; Li J; Qu J; Neelamegham S Mol Cell Proteomics; 2017 Nov; 16(11):2032-2047. PubMed ID: 28887379 [TBL] [Abstract][Full Text] [Related]
13. Comprehensive Protocol to Simultaneously Study Protein Phosphorylation, Acetylation, and N-Linked Sialylated Glycosylation. Melo-Braga MN; Ibáñez-Vea M; Kulej K; Larsen MR Methods Mol Biol; 2021; 2261():55-72. PubMed ID: 33420984 [TBL] [Abstract][Full Text] [Related]
14. Synergistically Bifunctional Paramagnetic Separation Enables Efficient Isolation of Urine Extracellular Vesicles and Downstream Phosphoproteomic Analysis. Sun J; Han S; Ma L; Zhang H; Zhan Z; Aguilar HA; Zhang H; Xiao K; Gu Y; Gu Z; Tao WA ACS Appl Mater Interfaces; 2021 Jan; 13(3):3622-3630. PubMed ID: 33443402 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous analysis of proteome, phospho- and glycoproteome of rat kidney tissue with electrostatic repulsion hydrophilic interaction chromatography. Hao P; Guo T; Sze SK PLoS One; 2011 Feb; 6(2):e16884. PubMed ID: 21373199 [TBL] [Abstract][Full Text] [Related]
16. Deconstruction of Heterogeneity of Size-Dependent Exosome Subpopulations from Human Urine by Profiling N-Glycoproteomics and Phosphoproteomics Simultaneously. Zheng H; Guan S; Wang X; Zhao J; Gao M; Zhang X Anal Chem; 2020 Jul; 92(13):9239-9246. PubMed ID: 32495629 [TBL] [Abstract][Full Text] [Related]
17. Isolation of Extracellular Vesicles Using Titanium Dioxide Microspheres. Santiago VF; Rosa-Fernandes L; Macedo-da-Silva J; Angeli CB; Mule SN; Marinho CRF; Torrecilhas AC; Marie SNK; Palmisano G Adv Exp Med Biol; 2024; 1443():1-22. PubMed ID: 38409413 [TBL] [Abstract][Full Text] [Related]
18. The Role of Post-Translational Modifications in Targeting Protein Cargo to Extracellular Vesicles. Atukorala I; Mathivanan S Subcell Biochem; 2021; 97():45-60. PubMed ID: 33779913 [TBL] [Abstract][Full Text] [Related]
19. Chromatography and its hyphenation to mass spectrometry for extracellular vesicle analysis. Pocsfalvi G; Stanly C; Fiume I; Vékey K J Chromatogr A; 2016 Mar; 1439():26-41. PubMed ID: 26830636 [TBL] [Abstract][Full Text] [Related]
20. A Comprehensive Proteomic SWATH-MS Workflow for Profiling Blood Extracellular Vesicles: A New Avenue for Glioma Tumour Surveillance. Hallal S; Azimi A; Wei H; Ho N; Lee MYT; Sim HW; Sy J; Shivalingam B; Buckland ME; Alexander-Kaufman KL Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32635403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]