These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31863078)

  • 1. Nanosized hydroxyapatite and β-tricalcium phosphate composite: Physico-chemical, cytotoxicity, morphological properties and in vivo trial.
    da Silva Brum I; de Carvalho JJ; da Silva Pires JL; de Carvalho MAA; Dos Santos LBF; Elias CN
    Sci Rep; 2019 Dec; 9(1):19602. PubMed ID: 31863078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new HA/TTCP material for bone augmentation: an in vivo histological pilot study in primates sinus grafting.
    Piccinini M; Rebaudi A; Sglavo VM; Bucciotti F; Pierfrancesco R
    Implant Dent; 2013 Feb; 22(1):83-90. PubMed ID: 23296033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β-tricalcium phosphate and octacalcium phosphate composite bioceramic material for bone tissue engineering.
    Ding X; Li A; Yang F; Sun K; Sun X
    J Biomater Appl; 2020 Apr; 34(9):1294-1299. PubMed ID: 32028822
    [No Abstract]   [Full Text] [Related]  

  • 4. Nanoscale surface characterization of biphasic calcium phosphate, with comparisons to calcium hydroxyapatite and β-tricalcium phosphate bioceramics.
    França R; Samani TD; Bayade G; Yahia L; Sacher E
    J Colloid Interface Sci; 2014 Apr; 420():182-8. PubMed ID: 24559717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo evaluation of interactions between biphasic calcium phosphate (BCP)-niobium pentoxide (Nb
    Kiyochi Junior HJ; Candido AG; Bonadio TGM; da Cruz JA; Baesso ML; Weinand WR; Hernandes L
    J Mater Sci Mater Med; 2020 Jul; 31(8):71. PubMed ID: 32712717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-hardening calcium deficient hydroxyapatite/gelatine foams for bone regeneration.
    Montufar EB; Traykova T; Schacht E; Ambrosio L; Santin M; Planell JA; Ginebra MP
    J Mater Sci Mater Med; 2010 Mar; 21(3):863-9. PubMed ID: 19876720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro and In Vivo Evaluation of Whitlockite Biocompatibility: Comparative Study with Hydroxyapatite and β-Tricalcium Phosphate.
    Jang HL; Zheng GB; Park J; Kim HD; Baek HR; Lee HK; Lee K; Han HN; Lee CK; Hwang NS; Lee JH; Nam KT
    Adv Healthc Mater; 2016 Jan; 5(1):128-36. PubMed ID: 25963732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixed nano/micro-sized calcium phosphate composite and EDTA root surface etching improve availability of graft material in intrabony defects: an in vivo scanning electron microscopy evaluation.
    Gamal AY; Iacono VJ
    J Periodontol; 2013 Dec; 84(12):1730-9. PubMed ID: 23451990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and preliminary in vivo evaluation of a novel modified hydroxyapatite produced by extrusion and spheronization techniques.
    Cortez PP; Atayde LM; Silva MA; Armada-da-Silva P; Fernandes MH; Afonso A; Lopes MA; Maurício AC; Santos JD
    J Biomed Mater Res B Appl Biomater; 2011 Oct; 99(1):170-9. PubMed ID: 21714082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histopathological, histomorphometrical, and radiological evaluations of hydroxyapatite/bioactive glass and fluorapatite/bioactive glass nanocomposite foams as cell scaffolds in rat tibia: an in vivo study.
    Seyedmajidi M; Haghanifar S; Hajian-Tilaki K; Seyedmajidi S
    Biomed Mater; 2018 Jan; 13(2):025015. PubMed ID: 29133624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of β-tricalcium phosphate granule size and morphology on tissue reaction in vivo.
    Ghanaati S; Barbeck M; Orth C; Willershausen I; Thimm BW; Hoffmann C; Rasic A; Sader RA; Unger RE; Peters F; Kirkpatrick CJ
    Acta Biomater; 2010 Dec; 6(12):4476-87. PubMed ID: 20624495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HA/TCP compounding of a porous CaP biomaterial improves bone formation and scaffold degradation--a long-term histological study.
    Schopper C; Ziya-Ghazvini F; Goriwoda W; Moser D; Wanschitz F; Spassova E; Lagogiannis G; Auterith A; Ewers R
    J Biomed Mater Res B Appl Biomater; 2005 Jul; 74(1):458-67. PubMed ID: 15912537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman ratios on the repair of grafted surgical bone defects irradiated or not with laser (λ780 nm) or LED (λ850 nm).
    Pinheiro AL; Soares LG; Marques AM; Aciole JM; de Souza RA; Silveira L
    J Photochem Photobiol B; 2014 Sep; 138():146-54. PubMed ID: 24935415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo response of porous hydroxyapatite and beta-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds.
    Ghosh SK; Nandi SK; Kundu B; Datta S; De DK; Roy SK; Basu D
    J Biomed Mater Res B Appl Biomater; 2008 Jul; 86(1):217-27. PubMed ID: 18161811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of powder properties on sintering, microstructure, mechanical strength and degradability of beta-tricalcium phosphate/calcium silicate composite bioceramics.
    Lin K; Chang J; Shen R
    Biomed Mater; 2009 Dec; 4(6):065009. PubMed ID: 19966383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A glass-reinforced hydroxyapatite and surgical-grade calcium sulfate for bone regeneration: In vivo biological behavior in a sheep model.
    Cortez PP; Silva MA; Santos M; Armada-da-Silva P; Afonso A; Lopes MA; Santos JD; Maurício AC
    J Biomater Appl; 2012 Aug; 27(2):201-17. PubMed ID: 21602251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect.
    Rojbani H; Nyan M; Ohya K; Kasugai S
    J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, mechanical property and corrosion behaviors of (HA+β-TCP)/Mg-5Sn composite with interpenetrating networks.
    Wang X; Li JT; Xie MY; Qu LJ; Zhang P; Li XL
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():386-92. PubMed ID: 26249605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does the association of blood-derived growth factors to nanostructured carbonated hydroxyapatite contributes to the maxillary sinus floor elevation? A randomized clinical trial.
    de Almeida Barros Mourão CF; Lourenço ES; Nascimento JRB; Machado RCM; Rossi AM; Leite PEC; Granjeiro JM; Alves GG; Calasans-Maia MD
    Clin Oral Investig; 2019 Jan; 23(1):369-379. PubMed ID: 29730707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and biocompatibility of an injectable bone regeneration composite.
    Tan R; Feng Q; Jin H; Li J; Yu X; She Z; Wang M; Liu H
    J Biomater Sci Polym Ed; 2011; 22(14):1861-79. PubMed ID: 20979688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.