These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 31863165)
1. Rainfall, not soil temperature, will limit the seed germination of dry forest species with climate change. Dantas BF; Moura MSB; Pelacani CR; Angelotti F; Taura TA; Oliveira GM; Bispo JS; Matias JR; Silva FFS; Pritchard HW; Seal CE Oecologia; 2020 Feb; 192(2):529-541. PubMed ID: 31863165 [TBL] [Abstract][Full Text] [Related]
2. The risk-takers and -avoiders: germination sensitivity to water stress in an arid zone with unpredictable rainfall. Duncan C; Schultz NL; Good MK; Lewandrowski W; Cook S AoB Plants; 2019 Dec; 11(6):plz066. PubMed ID: 31777652 [TBL] [Abstract][Full Text] [Related]
3. Climate change-induced water stress suppresses the regeneration of the critically endangered forest tree Nyssa yunnanensis. Zhang S; Kang H; Yang W PLoS One; 2017; 12(8):e0182012. PubMed ID: 28763476 [TBL] [Abstract][Full Text] [Related]
4. Some like it hot: Seed thermal threshold variation in obligate seeding Acacia pulchella along a climate gradient. Overton J; Ooi MKJ; Tangney R Sci Total Environ; 2024 Oct; 948():174929. PubMed ID: 39038678 [TBL] [Abstract][Full Text] [Related]
5. Explanatory ecological factors for the persistence of desiccation-sensitive seeds in transient soil seed banks: Quercus ilex as a case study. Joët T; Ourcival JM; Capelli M; Dussert S; Morin X Ann Bot; 2016 Jan; 117(1):165-76. PubMed ID: 26420203 [TBL] [Abstract][Full Text] [Related]
7. Water restriction alters seed bank traits and ecology in Atlantic Forest seasonal forests under climate change. Dias PB; Horn Kunz S; Pezzopane JEM; Xavier TMT; Zorzanelli JPF; Toledo JV; Gomes LP; Gorsani RG Glob Chang Biol; 2024 Sep; 30(9):e17494. PubMed ID: 39243166 [TBL] [Abstract][Full Text] [Related]
8. Interacting effects of warming and drought on regeneration and early growth of Acer pseudoplatanus and A. platanoides. Carón MM; De Frenne P; Brunet J; Chabrerie O; Cousins SA; De Backer L; Decocq G; Diekmann M; Heinken T; Kolb A; Naaf T; Plue J; Selvi F; Strimbeck GR; Wulf M; Verheyen K Plant Biol (Stuttg); 2015 Jan; 17(1):52-62. PubMed ID: 24750437 [TBL] [Abstract][Full Text] [Related]
9. Germination of Acacia harpophylla (Brigalow) seeds in relation to soil water potential: implications for rehabilitation of a threatened ecosystem. Arnold S; Kailichova Y; Baumgartl T PeerJ; 2014; 2():e268. PubMed ID: 24795847 [TBL] [Abstract][Full Text] [Related]
10. Global change impacts on arid zone ecosystems: Seedling establishment processes are threatened by temperature and water stress. Lewandrowski W; Stevens JC; Webber BL; L Dalziell E; Trudgen MS; Bateman AM; Erickson TE Ecol Evol; 2021 Jun; 11(12):8071-8084. PubMed ID: 34188872 [TBL] [Abstract][Full Text] [Related]
11. Fire season and intensity affect shrub recruitment in temperate sclerophyllous woodlands. Knox KJ; Clarke PJ Oecologia; 2006 Oct; 149(4):730-9. PubMed ID: 16847616 [TBL] [Abstract][Full Text] [Related]
13. Influence of biostimulants-seed-priming on Ceratotheca triloba germination and seedling growth under low temperatures, low osmotic potential and salinity stress. Masondo NA; Kulkarni MG; Finnie JF; Van Staden J Ecotoxicol Environ Saf; 2018 Jan; 147():43-48. PubMed ID: 28826029 [TBL] [Abstract][Full Text] [Related]
14. Comparison of the effects of temperature and water potential on seed germination of Fabaceae species from desert and subalpine grassland. Hu XW; Fan Y; Baskin CC; Baskin JM; Wang YR Am J Bot; 2015 May; 102(5):649-60. PubMed ID: 26022479 [TBL] [Abstract][Full Text] [Related]
15. Germination of grass species from dry and wet grasslands in response to osmotic stress under present and future temperatures. Souza CS; Ramos DM; Barbosa ERM; Borghetti F Am J Bot; 2022 Dec; 109(12):2018-2029. PubMed ID: 36256476 [TBL] [Abstract][Full Text] [Related]
16. Seed-bank structure and plant-recruitment conditions regulate the dynamics of a grassland-shrubland Chihuahuan ecotone. Moreno-de Las Heras M; Turnbull L; Wainwright J Ecology; 2016 Sep; 97(9):2303-2318. PubMed ID: 27859083 [TBL] [Abstract][Full Text] [Related]
17. Seed germination of a South American forest tree described by linear thermal time models. Daibes LF; Cardoso VJM J Therm Biol; 2018 Aug; 76():156-164. PubMed ID: 30143290 [TBL] [Abstract][Full Text] [Related]
18. Patterns and variability in seedling carbon assimilation: implications for tree recruitment under climate change. Peltier DM; Ibáñez I Tree Physiol; 2015 Jan; 35(1):71-85. PubMed ID: 25576758 [TBL] [Abstract][Full Text] [Related]
19. Seasonal rhythms of seed rain and seedling emergence in two tropical rain forests in southern Brazil. Marques MC; Oliveira PE Plant Biol (Stuttg); 2008 Sep; 10(5):596-603. PubMed ID: 18761498 [TBL] [Abstract][Full Text] [Related]
20. Thermal buffering capacity of the germination phenotype across the environmental envelope of the Cactaceae. Seal CE; Daws MI; Flores J; Ortega-Baes P; Galíndez G; León-Lobos P; Sandoval A; Ceroni Stuva A; Ramírez Bullón N; Dávila-Aranda P; Ordoñez-Salanueva CA; Yáñez-Espinosa L; Ulian T; Amosso C; Zubani L; Torres Bilbao A; Pritchard HW Glob Chang Biol; 2017 Dec; 23(12):5309-5317. PubMed ID: 28657127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]