These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 31863179)

  • 1. Comparison of wet bulb globe temperature measured on-site vs estimated and the impact on activity modification in high school football.
    Tripp B; Vincent HK; Bruner M; Smith MS
    Int J Biometeorol; 2020 Apr; 64(4):593-600. PubMed ID: 31863179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Evaluation of Portable Wet Bulb Globe Temperature Monitor Accuracy.
    Cooper E; Grundstein A; Rosen A; Miles J; Ko J; Curry P
    J Athl Train; 2017 Dec; 52(12):1161-1167. PubMed ID: 29154695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exertional Heat Illness in American Football Players: When Is the Risk Greatest?
    Cooper ER; Ferrara MS; Casa DJ; Powell JW; Broglio SP; Resch JE; Courson RW
    J Athl Train; 2016 Aug; 51(8):593-600. PubMed ID: 27505271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exertional Heat Illnesses and Environmental Conditions During High School Football Practices.
    Tripp BL; Eberman LE; Smith MS
    Am J Sports Med; 2015 Oct; 43(10):2490-5. PubMed ID: 26264766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variations of wet-bulb globe temperature across high school athletics in South Carolina.
    Yeargin S; Hirschhorn R; Grundstein A; Arango D; Graham A; Krebs A; Turner S
    Int J Biometeorol; 2023 May; 67(5):735-744. PubMed ID: 37002402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Heat Strain of Various Athletic Surfaces: A Comparison Between Observed and Modeled Wet-Bulb Globe Temperatures.
    Pryor JL; Pryor RR; Grundstein A; Casa DJ
    J Athl Train; 2017 Nov; 52(11):1056-1064. PubMed ID: 29095037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comprehensive Model for Estimating Heat Vulnerability of Young Athletes.
    Cheng W; Spengler JO; Brown RD
    Int J Environ Res Public Health; 2020 Aug; 17(17):. PubMed ID: 32854203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variations in Athlete Heat-Loss Potential Between Hot-Dry and Warm-Humid Environments at Equivalent Wet-Bulb Globe Temperature Thresholds.
    Vanos JK; Grundstein AJ
    J Athl Train; 2020 Nov; 55(11):1190-1198. PubMed ID: 33112954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatal Exertional Heat Stroke and American Football Players: The Need for Regional Heat-Safety Guidelines.
    Grundstein AJ; Hosokawa Y; Casa DJ
    J Athl Train; 2018 Jan; 53(1):43-50. PubMed ID: 29332471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors Affecting Incidence Rate of Exertional Heat Illnesses: Analysis of 6 Years of High School Football Practices in North Central Florida.
    Tripp BL; Winkelmann ZK; Eberman LE; Smith MS
    Orthop J Sports Med; 2021 Sep; 9(9):23259671211026627. PubMed ID: 34568503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat Policy Revision for Georgia High School Football Practices Based on Data-Driven Research.
    Cooper ER; Grundstein AJ; Miles JD; Ferrara MS; Curry P; Casa DJ; Hosokawa Y
    J Athl Train; 2020 Jul; 55(7):673-681. PubMed ID: 32559286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional differences in exertional heat illness rates among Georgia USA high school football players.
    Poore S; Grundstein A; Cooper E; Shannon J
    Int J Biometeorol; 2020 Apr; 64(4):643-650. PubMed ID: 31897699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat index and adjusted temperature as surrogates for wet bulb globe temperature to screen for occupational heat stress.
    Bernard TE; Iheanacho I
    J Occup Environ Hyg; 2015; 12(5):323-33. PubMed ID: 25616731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat Stress and Injury Prevention Practices During Summer High School Football Training in South Texas.
    Hearon CM; Ruiz A; Taylor ZJ
    Int J Exerc Sci; 2010; 3(2):55-63. PubMed ID: 27182327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Empirical approach to outdoor WBGT from meteorological data and performance of two different instrument designs.
    Bernard TE; Barrow CA
    Ind Health; 2013; 51(1):79-85. PubMed ID: 23385431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extreme Heat Considerations in International Football Venues: The Utility of Climatologic Data in Decision Making.
    Hosokawa Y; Grundstein AJ; Casa DJ
    J Athl Train; 2018 Sep; 53(9):860-865. PubMed ID: 30251881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exertional Heat-Stroke Preparedness in High School Football by Region and State Mandate Presence.
    Kerr ZY; Scarneo-Miller SE; Yeargin SW; Grundstein AJ; Casa DJ; Pryor RR; Register-Mihalik JK
    J Athl Train; 2019 Sep; 54(9):921-928. PubMed ID: 31454289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat stress incidence and matchplay characteristics in Women's Grand Slam Tennis.
    Smith MT; Reid M; Kovalchik S; Wood T; Duffield R
    J Sci Med Sport; 2018 Jul; 21(7):666-670. PubMed ID: 29169925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat Stress Management in the Military: Wet-Bulb Globe Temperature Offsets for Modern Body Armor Systems.
    Hunt AP; Potter AW; Linnane DM; Xu X; Patterson MJ; Stewart IB
    Hum Factors; 2022 Dec; 64(8):1306-1316. PubMed ID: 33861157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between OSHA-NIOSH Heat Safety Tool app and WBGT monitor to assess heat stress risk in agriculture.
    Dillane D; Balanay JAG
    J Occup Environ Hyg; 2020 Apr; 17(4):181-192. PubMed ID: 32105559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.