These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 31863750)
1. Structural Insights into the Specific Recognition of 5-methylcytosine and 5-hydroxymethylcytosine by TAL Effectors. Liu L; Zhang Y; Liu M; Wei W; Yi C; Peng J J Mol Biol; 2020 Feb; 432(4):1035-1047. PubMed ID: 31863750 [TBL] [Abstract][Full Text] [Related]
2. Deciphering TAL effectors for 5-methylcytosine and 5-hydroxymethylcytosine recognition. Zhang Y; Liu L; Guo S; Song J; Zhu C; Yue Z; Wei W; Yi C Nat Commun; 2017 Oct; 8(1):901. PubMed ID: 29026078 [TBL] [Abstract][Full Text] [Related]
3. Engineering DNA Backbone Interactions Results in TALE Scaffolds with Enhanced 5-Methylcytosine Selectivity. Rathi P; Witte A; Summerer D Sci Rep; 2017 Nov; 7(1):15067. PubMed ID: 29118409 [TBL] [Abstract][Full Text] [Related]
4. Complete, Programmable Decoding of Oxidized 5-Methylcytosine Nucleobases in DNA by Chemoselective Blockage of Universal Transcription-Activator-Like Effector Repeats. Gieß M; Witte A; Jasper J; Koch O; Summerer D J Am Chem Soc; 2018 May; 140(18):5904-5908. PubMed ID: 29677450 [TBL] [Abstract][Full Text] [Related]
5. Selective recognition of Rathi P; Maurer S; Summerer D Philos Trans R Soc Lond B Biol Sci; 2018 Jun; 373(1748):. PubMed ID: 29685980 [TBL] [Abstract][Full Text] [Related]
6. Context and number of noncanonical repeat variable diresidues impede the design of TALE proteins with improved DNA targeting. Anderson JT; Rogers JM; Barrera LA; Bulyk ML Protein Sci; 2020 Feb; 29(2):606-616. PubMed ID: 31833142 [TBL] [Abstract][Full Text] [Related]
7. 5-Methylcytosine (5mC) and 5-Hydroxymethylcytosine (5hmC) Enhance the DNA Binding of CREB1 to the C/EBP Half-Site Tetranucleotide GCAA. Syed KS; He X; Tillo D; Wang J; Durell SR; Vinson C Biochemistry; 2016 Dec; 55(49):6940-6948. PubMed ID: 27951657 [TBL] [Abstract][Full Text] [Related]
8. Structural basis for sequence-specific recognition of DNA by TAL effectors. Deng D; Yan C; Pan X; Mahfouz M; Wang J; Zhu JK; Shi Y; Yan N Science; 2012 Feb; 335(6069):720-3. PubMed ID: 22223738 [TBL] [Abstract][Full Text] [Related]
9. Recognition of modified cytosine variants by the DNA-binding domain of methyl-directed endonuclease McrBC. Zagorskaitė E; Manakova E; Sasnauskas G FEBS Lett; 2018 Oct; 592(19):3335-3345. PubMed ID: 30194838 [TBL] [Abstract][Full Text] [Related]
10. Evolution of Transcription Activator-Like Effectors in Xanthomonas oryzae. Erkes A; Reschke M; Boch J; Grau J Genome Biol Evol; 2017 Jun; 9(6):1599-1615. PubMed ID: 28637323 [TBL] [Abstract][Full Text] [Related]
11. Structural basis of the TAL effector-DNA interaction. Bochtler M Biol Chem; 2012 Oct; 393(10):1055-66. PubMed ID: 23089535 [TBL] [Abstract][Full Text] [Related]
12. TALEored Epigenetics: A DNA-Binding Scaffold for Programmable Epigenome Editing and Analysis. Kubik G; Summerer D Chembiochem; 2016 Jun; 17(11):975-80. PubMed ID: 26972580 [TBL] [Abstract][Full Text] [Related]
13. The Epstein-Barr Virus B-ZIP Protein Zta Recognizes Specific DNA Sequences Containing 5-Methylcytosine and 5-Hydroxymethylcytosine. Tillo D; Ray S; Syed KS; Gaylor MR; He X; Wang J; Assad N; Durell SR; Porollo A; Weirauch MT; Vinson C Biochemistry; 2017 Nov; 56(47):6200-6210. PubMed ID: 29072898 [TBL] [Abstract][Full Text] [Related]
14. Dysregulation and prognostic potential of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) levels in prostate cancer. Storebjerg TM; Strand SH; Høyer S; Lynnerup AS; Borre M; Ørntoft TF; Sørensen KD Clin Epigenetics; 2018 Aug; 10(1):105. PubMed ID: 30086793 [TBL] [Abstract][Full Text] [Related]
15. Sequence-specific recognition of methylated DNA by an engineered transcription activator-like effector protein. Tsuji S; Futaki S; Imanishi M Chem Commun (Camb); 2016 Dec; 52(99):14238-14241. PubMed ID: 27872906 [TBL] [Abstract][Full Text] [Related]
16. Engineered TALE Repeats for Enhanced Imaging-Based Analysis of Cellular 5-Methylcytosine. Muñoz-López Á; Jung A; Buchmuller B; Wolffgramm J; Maurer S; Witte A; Summerer D Chembiochem; 2021 Feb; 22(4):645-651. PubMed ID: 32991020 [TBL] [Abstract][Full Text] [Related]
17. Design and Application of DNA Modification-Specific Transcription-Activator-Like Effectors. Buchmuller B; Muñoz-López Á; Gieß M; Summerer D Methods Mol Biol; 2021; 2198():381-399. PubMed ID: 32822046 [TBL] [Abstract][Full Text] [Related]
18. The N6-Position of Adenine Is a Blind Spot for TAL-Effectors That Enables Effective Binding of Methylated and Fluorophore-Labeled DNA. Flade S; Jasper J; Gieß M; Juhasz M; Dankers A; Kubik G; Koch O; Weinhold E; Summerer D ACS Chem Biol; 2017 Jul; 12(7):1719-1725. PubMed ID: 28493677 [TBL] [Abstract][Full Text] [Related]
19. The crystal structure of TAL effector PthXo1 bound to its DNA target. Mak AN; Bradley P; Cernadas RA; Bogdanove AJ; Stoddard BL Science; 2012 Feb; 335(6069):716-9. PubMed ID: 22223736 [TBL] [Abstract][Full Text] [Related]
20. Isolation of Human Genomic DNA Sequences with Expanded Nucleobase Selectivity. Rathi P; Maurer S; Kubik G; Summerer D J Am Chem Soc; 2016 Aug; 138(31):9910-8. PubMed ID: 27429302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]