These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 31863851)

  • 1. How sequential changes in reward expectation modulate cognitive control: Pupillometry as a tool to monitor dynamic changes in reward expectation.
    Fröber K; Pittino F; Dreisbach G
    Int J Psychophysiol; 2020 Feb; 148():35-49. PubMed ID: 31863851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing reward prospect promotes cognitive flexibility: Direct evidence from voluntary task switching with double registration.
    Fröber K; Pfister R; Dreisbach G
    Q J Exp Psychol (Hove); 2019 Aug; 72(8):1926-1944. PubMed ID: 30501581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How sequential changes in reward magnitude modulate cognitive flexibility: Evidence from voluntary task switching.
    Fröber K; Dreisbach G
    J Exp Psychol Learn Mem Cogn; 2016 Feb; 42(2):285-295. PubMed ID: 26237619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dynamic balance between cognitive flexibility and stability: the influence of local changes in reward expectation and global task context on voluntary switch rate.
    Fröber K; Raith L; Dreisbach G
    Psychol Res; 2018 Jan; 82(1):65-77. PubMed ID: 28939942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How Sequentially Changing Reward Prospect Modulates Meta-control: Increasing Reward Prospect Promotes Cognitive Flexibility.
    Fröber K; Dreisbach G
    Cogn Affect Behav Neurosci; 2021 Jun; 21(3):534-548. PubMed ID: 32901401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Task-evoked pupillary responses track effort exertion: Evidence from task-switching.
    da Silva Castanheira K; LoParco S; Otto AR
    Cogn Affect Behav Neurosci; 2021 Jun; 21(3):592-606. PubMed ID: 33083974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pupillary responses and reaction times index different cognitive processes in a combined Go/Switch incidental learning task.
    Isabella SL; Urbain C; Cheyne JA; Cheyne D
    Neuropsychologia; 2019 Apr; 127():48-56. PubMed ID: 30771402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating anticipatory processes during sequentially changing reward prospect: An ERP study.
    Fröber K; Jurczyk V; Mendl J; Dreisbach G
    Brain Cogn; 2021 Dec; 155():105815. PubMed ID: 34731759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disentangling reward anticipation with simultaneous pupillometry / fMRI.
    Schneider M; Leuchs L; Czisch M; Sämann PG; Spoormaker VI
    Neuroimage; 2018 Sep; 178():11-22. PubMed ID: 29733957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How performance-contingent reward prospect modulates cognitive control: Increased cue maintenance at the cost of decreased flexibility.
    Hefer C; Dreisbach G
    J Exp Psychol Learn Mem Cogn; 2017 Oct; 43(10):1643-1658. PubMed ID: 28287763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reward Boosts Neural Coding of Task Rules to Optimize Cognitive Flexibility.
    Hall-McMaster S; Muhle-Karbe PS; Myers NE; Stokes MG
    J Neurosci; 2019 Oct; 39(43):8549-8561. PubMed ID: 31519820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of luminance on tonic and phasic pupillary responses to sustained cognitive load.
    Peysakhovich V; Vachon F; Dehais F
    Int J Psychophysiol; 2017 Feb; 112():40-45. PubMed ID: 27979740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function.
    Gilzenrat MS; Nieuwenhuis S; Jepma M; Cohen JD
    Cogn Affect Behav Neurosci; 2010 May; 10(2):252-69. PubMed ID: 20498349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced pupil dilation during action preparation in schizophrenia.
    Thakkar KN; Brascamp JW; Ghermezi L; Fifer K; Schall JD; Park S
    Int J Psychophysiol; 2018 Jun; 128():111-118. PubMed ID: 29574231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal dynamics of motivation-cognitive control interactions revealed by high-resolution pupillometry.
    Chiew KS; Braver TS
    Front Psychol; 2013; 4():15. PubMed ID: 23372557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bottom-up influences on voluntary task switching in different reward contexts?
    Jurczyk V; Fröber K; Dreisbach G
    Acta Psychol (Amst); 2021 Jun; 217():103312. PubMed ID: 33964691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of sustained and transient effort triggered by reward - A combined EEG and pupillometry study.
    Kostandyan M; Bombeke K; Carsten T; Krebs RM; Notebaert W; Boehler CN
    Neuropsychologia; 2019 Feb; 123():116-130. PubMed ID: 29709582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practice-induced and sequential modulations in the Simon task: evidence from pupil dilation.
    D'Ascenzo S; Iani C; Guidotti R; Laeng B; Rubichi S
    Int J Psychophysiol; 2016 Dec; 110():187-193. PubMed ID: 27503609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reward elicits cognitive control over emotional distraction: Evidence from pupillometry.
    Walsh AT; Carmel D; Grimshaw GM
    Cogn Affect Behav Neurosci; 2019 Jun; 19(3):537-554. PubMed ID: 30488225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phasic alertness and residual switch costs in task switching.
    Schneider DW
    J Exp Psychol Hum Percept Perform; 2017 Feb; 43(2):317-327. PubMed ID: 27831719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.