These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 31863931)
1. Phenotype and TMT-based quantitative proteomics analysis of Brassica napus reveals new insight into chlorophyll synthesis and chloroplast structure. Yang P; Li Y; He C; Yan J; Zhang W; Li X; Xiang F; Zuo Z; Li X; Zhu Y; Liu X; Zhao X J Proteomics; 2020 Mar; 214():103621. PubMed ID: 31863931 [TBL] [Abstract][Full Text] [Related]
3. iTRAQ-Based Quantitative Proteomics Analysis Reveals the Mechanism of Golden-Yellow Leaf Mutant in Hybrid Paper Mulberry. Wang F; Chen N; Shen S Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008552 [TBL] [Abstract][Full Text] [Related]
4. Genetic mapping and physiological analysis of chlorophyll-deficient mutant in Brassica napus L. Lin N; Gao Y; Zhou Q; Ping X; Li J; Liu L; Yin J BMC Plant Biol; 2022 May; 22(1):244. PubMed ID: 35585493 [TBL] [Abstract][Full Text] [Related]
5. Heme oxygenase 1 defects lead to reduced chlorophyll in Brassica napus. Zhu L; Yang Z; Zeng X; Gao J; Liu J; Yi B; Ma C; Shen J; Tu J; Fu T; Wen J Plant Mol Biol; 2017 Apr; 93(6):579-592. PubMed ID: 28108964 [TBL] [Abstract][Full Text] [Related]
6. Proteome Changes Reveal the Protective Roles of Exogenous Citric Acid in Alleviating Cu Toxicity in Ju YH; Roy SK; Roy Choudhury A; Kwon SJ; Choi JY; Rahman MA; Katsube-Tanaka T; Shiraiwa T; Lee MS; Cho K; Woo SH Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070927 [TBL] [Abstract][Full Text] [Related]
7. Histological, Physiological, and Comparative Proteomic Analyses Provide Insights into Leaf Rolling in Brassica napus. Chen W; Wan S; Shen L; Zhou Y; Huang C; Chu P; Guan R J Proteome Res; 2018 May; 17(5):1761-1772. PubMed ID: 29693398 [TBL] [Abstract][Full Text] [Related]
8. Characterization and Fine Mapping of a Yellow-Virescent Gene Regulating Chlorophyll Biosynthesis and Early Stage Chloroplast Development in Zhao C; Liu L; Safdar LB; Xie M; Cheng X; Liu Y; Xiang Y; Tong C; Tu J; Huang J; Liu S G3 (Bethesda); 2020 Sep; 10(9):3201-3211. PubMed ID: 32646913 [TBL] [Abstract][Full Text] [Related]
9. Photosynthetic characteristics and genetic mapping of a new yellow leaf mutant Zhang H; Zhang W; Xiang F; Zhang Z; Guo Y; Chen T; Duan F; Zhou Q; Li X; Fang M; Li X; Li B; Zhao X Mol Breed; 2023 Nov; 43(11):80. PubMed ID: 37954030 [TBL] [Abstract][Full Text] [Related]
10. Fine mapping of a dominant gene conferring chlorophyll-deficiency in Brassica napus. Wang Y; He Y; Yang M; He J; Xu P; Shao M; Chu P; Guan R Sci Rep; 2016 Aug; 6():31419. PubMed ID: 27506952 [TBL] [Abstract][Full Text] [Related]
11. Fine mapping of CscpFtsY, a gene conferring the yellow leaf phenotype in cucumber (Cucumis sativus L.). Zha G; Yin J; Cheng F; Song M; Zhang M; Obel HO; Wang Y; Chen J; Lou Q BMC Plant Biol; 2022 Dec; 22(1):570. PubMed ID: 36471240 [TBL] [Abstract][Full Text] [Related]
12. Proteome Dynamics and Physiological Responses to Short-Term Salt Stress in Brassica napus Leaves. Jia H; Shao M; He Y; Guan R; Chu P; Jiang H PLoS One; 2015; 10(12):e0144808. PubMed ID: 26691228 [TBL] [Abstract][Full Text] [Related]
13. Fine mapping of the QTL cqSPDA2 for chlorophyll content in Brassica napus L. Ye J; Liu H; Zhao Z; Xu L; Li K; Du D BMC Plant Biol; 2020 Nov; 20(1):511. PubMed ID: 33167895 [TBL] [Abstract][Full Text] [Related]
14. Disruption of carotene biosynthesis leads to abnormal plastids and variegated leaves in Brassica napus. Zhao X; Hu K; Yan M; Yi B; Wen J; Ma C; Shen J; Fu T; Tu J Mol Genet Genomics; 2020 Jul; 295(4):981-999. PubMed ID: 32306107 [TBL] [Abstract][Full Text] [Related]
15. Identification and function analysis of yellow-leaf mutant (YX-yl) of broomcorn millet. Wang Y; Wang J; Chen L; Meng X; Zhen X; Liang Y; Han Y; Li H; Zhang B BMC Plant Biol; 2022 Sep; 22(1):463. PubMed ID: 36167497 [TBL] [Abstract][Full Text] [Related]
16. Proteomic and comparative genomic analysis reveals adaptability of Brassica napus to phosphorus-deficient stress. Chen S; Ding G; Wang Z; Cai H; Xu F J Proteomics; 2015 Mar; 117():106-19. PubMed ID: 25644742 [TBL] [Abstract][Full Text] [Related]
17. Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Baryla A; Carrier P; Franck F; Coulomb C; Sahut C; Havaux M Planta; 2001 Apr; 212(5-6):696-709. PubMed ID: 11346943 [TBL] [Abstract][Full Text] [Related]
18. Cytological, genetic, and proteomic analysis of a sesame (Sesamum indicum L.) mutant Siyl-1 with yellow-green leaf color. Gao TM; Wei SL; Chen J; Wu Y; Li F; Wei LB; Li C; Zeng YJ; Tian Y; Wang DY; Zhang HY Genes Genomics; 2020 Jan; 42(1):25-39. PubMed ID: 31677128 [TBL] [Abstract][Full Text] [Related]
19. Comparative Proteomic and Physiological Analysis Reveals the Variation Mechanisms of Leaf Coloration and Carbon Fixation in a Xantha Mutant of Ginkgo biloba L. Liu X; Yu W; Wang G; Cao F; Cai J; Wang H Int J Mol Sci; 2016 Oct; 17(11):. PubMed ID: 27801782 [TBL] [Abstract][Full Text] [Related]
20. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum. Cao JY; Xu YP; Cai XZ J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]