These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 3186433)

  • 21. alpha1-adrenoceptors antagonize activated chloride conductance of amphibian skin epithelium.
    Nagel W; Katz U
    Pflugers Arch; 1998 Nov; 436(6):863-70. PubMed ID: 9799400
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cl transport across the basolateral membrane of principal cells in frog skin.
    Dörge A; Beck FX; Wienecke P; Rick R
    Miner Electrolyte Metab; 1989; 15(3):155-62. PubMed ID: 2542747
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intracellular ion concentrations in the isolated frog skin epithelium: evidence for different types of mitochondria-rich cells.
    Rick R
    J Membr Biol; 1992 May; 127(3):227-36. PubMed ID: 1495088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electron microprobe analysis of frog skin epithelium: evidence for a syncytial sodium transport compartment.
    Rick R; Dörge A; von Arnim E; Thurau K
    J Membr Biol; 1978 Mar; 39(4):313-31. PubMed ID: 641981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of voltage clamping on epithelial cell composition in toad urinary bladder studied with x-ray microanalysis.
    Bowler JM; McLaughlin CW; Butt AG; Purves RD; Macknight AD
    J Membr Biol; 1995 May; 145(2):175-85. PubMed ID: 7563019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transepithelial chloride conductance in amphibian skin: regulatory mechanisms and localization.
    Nagel W; Davis JM; Katz U
    Pflugers Arch; 2000 Oct; 440(6):797-808. PubMed ID: 11041544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cyclic AMP-and beta-agonist-activated chloride conductance of a toad skin epithelium.
    Willumsen NJ; Vestergaard L; Larsen EH
    J Physiol; 1992 Apr; 449():641-53. PubMed ID: 1326049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Roles of external and cellular Cl- ions on the activation of an apical electrodiffusional Cl- pathway in toad skin.
    Procopio J; Lacaz-Vieira F
    J Membr Biol; 1990 Jul; 117(1):57-67. PubMed ID: 1698229
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Beta-adrenergic receptors couple to CFTR chloride channels of intercalated mitochondria-rich cells in the heterocellular toad skin epithelium.
    Larsen EH; Amstrup J; Willumsen NJ
    Biochim Biophys Acta; 2003 Dec; 1618(2):140-52. PubMed ID: 14729151
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electron microprobe analysis of the different epithelial cells of toad urinary bladder. Electrolyte concentrations at different functional states of transepithelial sodium transport.
    Rick R; Dörge A; Macknight AD; Leaf A; Thurau K
    J Membr Biol; 1978 Mar; 39(2-3):257-71. PubMed ID: 417181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Correlation between chloride flux via the mitochondria-rich cells and transepithelial water movement in isolated frog skin (Rana esculenta).
    Nielsen R
    Acta Physiol Scand; 1995 Dec; 155(4):351-61. PubMed ID: 8719255
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cl transport across the basolateral membrane in frog skin epithelium.
    Dörge A; Rick R; Beck F; Thurau K
    Pflugers Arch; 1985; 405 Suppl 1():S8-11. PubMed ID: 3878962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chloride-related current fluctuation in amphibian skin.
    Nagel W; Van Driessche W
    Pflugers Arch; 1991 Jul; 418(6):544-50. PubMed ID: 1658724
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Active chloride transport in the in vitro opercular skin of a teleost (Fundulus heteroclitus), a gill-like epithelium rich in chloride cells.
    Degnan KJ; Karnaky KJ; Zadunaisky JA
    J Physiol; 1977 Sep; 271(1):155-91. PubMed ID: 915831
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of mitochondria-rich cells in the chloride current conductance across toad skin.
    Katz U; van Driessche W; Scheffey C
    Biol Cell; 1985; 55(3):245-50. PubMed ID: 2423166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chloride transport in toad skin (Bufo viridis). The effect of salt adaptation.
    Katz U; Larsen EH
    J Exp Biol; 1984 Mar; 109():353-71. PubMed ID: 6736866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cyanide inhibition of chloride conductance across toad skin.
    Nagel W; Katz U
    J Membr Biol; 2000 Jan; 173(2):117-25. PubMed ID: 10630927
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of forskolin on conductive anion pathways of toad skin.
    Nagel W; Van Driessche W
    Am J Physiol; 1992 Jul; 263(1 Pt 1):C166-71. PubMed ID: 1636675
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sulfate transport in toad skin: evidence for mitochondria-rich cell pathways in common with halide ions.
    Larsen EH; Simonsen K
    Comp Biochem Physiol A Comp Physiol; 1988; 90(4):709-14. PubMed ID: 2460287
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The voltage-dependent chloride current conductance of toad skin is localized to mitochondria-rich cells.
    Katz U; Scheffey C
    Biochim Biophys Acta; 1986 Oct; 861(3):480-2. PubMed ID: 3768357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.