These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 31864631)
1. Amperometric microsensor based on nanoporous gold for ascorbic acid detection in highly acidic biological extracts. Kumar A; Furtado VL; Gonçalves JM; Bannitz-Fernandes R; Netto LES; Araki K; Bertotti M Anal Chim Acta; 2020 Jan; 1095():61-70. PubMed ID: 31864631 [TBL] [Abstract][Full Text] [Related]
2. Amperometric microsensor for direct probing of ascorbic acid in human gastric juice. Hutton EA; Pauliukaitė R; Hocevar SB; Ogorevc B; Smyth MR Anal Chim Acta; 2010 Sep; 678(2):176-82. PubMed ID: 20888449 [TBL] [Abstract][Full Text] [Related]
3. A novel nanoporous gold modified electrode for the selective determination of dopamine in the presence of ascorbic acid. Qiu HJ; Zhou GP; Ji GL; Zhang Y; Huang XR; Ding Y Colloids Surf B Biointerfaces; 2009 Feb; 69(1):105-8. PubMed ID: 19108998 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical dopamine sensor using a nanoporous gold microelectrode: a proof-of-concept study for the detection of dopamine release by scanning electrochemical microscopy. Sáenz HSC; Hernández-Saravia LP; Selva JSG; Sukeri A; Espinoza-Montero PJ; Bertotti M Mikrochim Acta; 2018 Jul; 185(8):367. PubMed ID: 29987397 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical detection of hydrazine using a highly sensitive nanoporous gold electrode. Tang YY; Kao CL; Chen PY Anal Chim Acta; 2012 Jan; 711():32-9. PubMed ID: 22152793 [TBL] [Abstract][Full Text] [Related]
6. Prussian blue-modified nanoporous gold film electrode for amperometric determination of hydrogen peroxide. Ghaderi S; Mehrgardi MA Bioelectrochemistry; 2014 Aug; 98():64-9. PubMed ID: 24717776 [TBL] [Abstract][Full Text] [Related]
7. A high-performance amperometric sensor based on a monodisperse Pt-Au bimetallic nanoporous electrode for determination of hydrogen peroxide released from living cells. Zhong Y; Liu MM; Chen Y; Yang YJ; Wu LN; Bai FQ; Lei Y; Gao F; Liu AL Mikrochim Acta; 2020 Aug; 187(9):499. PubMed ID: 32803409 [TBL] [Abstract][Full Text] [Related]
8. Ultrafast one-pot anodic preparation of Co Pei Y; Hu M; Tang X; Huang W; Li Z; Chen S; Xia Y Anal Chim Acta; 2019 Jun; 1059():49-58. PubMed ID: 30876632 [TBL] [Abstract][Full Text] [Related]
9. Potentiometric Biosensing of Ascorbic Acid, Uric Acid, and Cysteine in Microliter Volumes Using Miniaturized Nanoporous Gold Electrodes. Freeman CJ; Ullah B; Islam MS; Collinson MM Biosensors (Basel); 2020 Dec; 11(1):. PubMed ID: 33379137 [TBL] [Abstract][Full Text] [Related]
10. Comparative electrochemical study of new self-assembled monolayers of 2-{[(Z)-1-(3-furyl)methylidene]amino}-1-benzenethiol and 2-{[(2-sulfanylphenyl)imino]methyl}phenol for determination of dopamine in the presence of high concentration of ascorbic acid and uric acid. Behpour M; Ghoreishi SM; Honarmand E; Salavati-Niasari M Analyst; 2011 May; 136(9):1979-86. PubMed ID: 21409249 [TBL] [Abstract][Full Text] [Related]
11. Redox cycling-based signal amplification at alkanethiol modified nanoporous gold interdigitated microelectrodes. Liu Y; Arjun AM; Webb S; Wolfe M; Chávez JL; Swami NS Anal Chim Acta; 2024 Aug; 1316():342818. PubMed ID: 38969402 [TBL] [Abstract][Full Text] [Related]
12. 3D nanoporous gold scaffold supported on graphene paper: Freestanding and flexible electrode with high loading of ultrafine PtCo alloy nanoparticles for electrochemical glucose sensing. Zhao A; Zhang Z; Zhang P; Xiao S; Wang L; Dong Y; Yuan H; Li P; Sun Y; Jiang X; Xiao F Anal Chim Acta; 2016 Sep; 938():63-71. PubMed ID: 27619087 [TBL] [Abstract][Full Text] [Related]
13. Non-enzymatic glucose sensors based on controllable nanoporous gold/copper oxide nanohybrids. Xiao X; Wang M; Li H; Pan Y; Si P Talanta; 2014 Jul; 125():366-71. PubMed ID: 24840458 [TBL] [Abstract][Full Text] [Related]
14. Biosensor based on glucose oxidase-nanoporous gold co-catalysis for glucose detection. Wu C; Sun H; Li Y; Liu X; Du X; Wang X; Xu P Biosens Bioelectron; 2015 Apr; 66():350-5. PubMed ID: 25463642 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical determination of dopamine in the presence of ascorbic acid and uric acid using the synergistic effect of gold nanoflowers and L-cysteamine monolayer at the surface of a gold electrode. Li Y; Lu Q; Shi A; Chen Y; Wu S; Wang L Anal Sci; 2011; 27(9):921-7. PubMed ID: 21908921 [TBL] [Abstract][Full Text] [Related]
17. Preparation of Au-Pt nanostructures by combining top-down with bottom-up strategies and application in label-free electrochemical immunosensor for detection of NMP22. Jia H; Gao P; Ma H; Wu D; Du B; Wei Q Bioelectrochemistry; 2015 Feb; 101():22-7. PubMed ID: 25025933 [TBL] [Abstract][Full Text] [Related]
18. An ascorbic acid amperometric sensor using over-oxidized polypyrrole and palladium nanoparticles composites. Shi W; Liu C; Song Y; Lin N; Zhou S; Cai X Biosens Bioelectron; 2012; 38(1):100-6. PubMed ID: 22651968 [TBL] [Abstract][Full Text] [Related]
20. Label-free amperometric immunosensor for the detection of human serum chorionic gonadotropin based on nanoporous gold and graphene. Li R; Wu D; Li H; Xu C; Wang H; Zhao Y; Cai Y; Wei Q; Du B Anal Biochem; 2011 Jul; 414(2):196-201. PubMed ID: 21435334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]